

Town of Greenwich Department of Public Works

Screening-level Ecological Risk Assessment Addendum: Downstream Area Greenwich High School Greenwich, Connecticut

Prepared by:

AECOM

500 Enterprise Drive, Suite 1A, Rocky Hill, CT 06067 T 860.263.5800 F 860.263.5777 <u>www.aecom.com</u>

Date:

October 2017

Table of Contents

1.	Introduction				1-1
	1.1				
	1.2	SLERA Organization			
2.	Site	Site Conditions			
	2.1				
	2.2 2.3	Previous Investigations			
	2.3	2.3.1	ological Characteristics		
	2.4		•		
•			•	s and Habitats	
3.	3.1				
	3.1	3.1.1	Dbjective		
		3.1.2	•	vitats and Receptors	
		3.1.3	-	nent and Measurement Endpoints	
				·	
		3.1.4	Concepti	ual Site Model	3-2
				COPECs	
		3.2.1			
		3.2.2	COPEC	Screening Process	
			3.2.2.1	Calculated Totals	3-3
			3.2.2.2	Ecological Screening Levels	3-4
			3.2.2.3	COPEC Screening Results	3-4
4.	Exposure and Toxicity Assessment			4-1	
	4.1 Ecological Exposure Assessment				4-1
		4.1.1	Commun	nity-based Receptor Exposure	4-1
		4.1.2	Wildlife F	Receptor Exposure	4-1
		4.1.3	Bioaccur	mulation Factors	4-2
		4.1.4	Life Histo	ory Parameters	4-2
		4.1.5	Exposure	e Point Concentrations	4-2
	4.2	4.2 Ecological Effects Assessment		4-3	
		4.2.1	Surface \	Water Benchmark Screening	4-3
		4.2.2	Sedimen	nt Benchmark Screening	4-3
		4.2.3	Wildlife F	Receptors	4-3
5.	Risk	Charac	terization	າ	5-1

	5.1	Step 2 5.1.1	Screening Level Ecological Risk Characterization	5-2	
		•	Amphibians)	5-2	
		5.1.2	Sediment Evaluation (Assessment Endpoint 3: Benthic Invertebrate Community)	5-2	
		5.1.3	Sediment Evaluation (Assessment Endpoints 4, 5, 6, 7, and 8: Aquatic-feeding Mammals and Birds)	5-3	
	5.2	Step 3, 5.2.1	A Refinement of COPECSurface Water Evaluation (Assessment Endpoint 1: Aquatic Community)		
		5.2.2	Sediment Evaluation (Assessment Endpoint 3: Benthic Invertebrate Community)	5-4	
		5.2.3	Sediment Evaluation (Assessment Endpoints 4, 5, 6, 7, and 8: Aquatic-feeding Mammals and Birds)	5-5	
6.	Unce	Uncertainty Analysis			
	6.1	Uncerta 6.1.1	ainties Associated with Data Quality		
		6.1.2	Potential Data Gaps	6-2	
	6.2	Uncerta 6.2.1	ainties Associated with Selection of COPEC Detected Analytes with no Screening Levels or Other Numeric Assumptions		
		6.2.2	Uncertainties related to Non-Detected Analytes	6-2	
	6.3	Uncerta 6.3.1	ainties Associated with Exposure Assessment		
		6.3.2	Exposure Point Concentrations	6-3	
		6.3.3	Exposure Analysis	6-4	
		6.3.4	Uncertainties Associated with Toxicity Assessment and Risk Characterization	6-5	
7.	Risk (Conclus	sions	7-1	
3.	Refer	ences		8-1	

List of Figures

- Figure 1-1 SLERA Site Location
- Figure 1-2 USEPA 8-Step Ecological Risk Assessment Process
- Figure 2-1 Site Location
- Figure 3-1 SLERA Conceptual Site Model
- Figure 3-2 Food Web Model
- Figure 3-3 Ecological Screening Process

List of Tables

Table 3-1	Representative Species and Exposure Pathways
Table 3-2	Sample Summary Table – SLERA Addendum
Table 3-3	Screening Levels and Benchmarks
Table 4-1	Ecological Risk Assessment Assumptions
Table 4-2	Bioaccumulation Factors
Table 4-3	Exposure Point Concentrations for Surface Water and Sediment
Table 5-1	Surface Water Risk Characterization – Aquatic Biota Assessment Endpoint (detected COPEC)
Table 5-2	Sediment Risk Characterization – Benthic Biota Assessment Endpoint
Table 5-3	Step 2 Food Web Model – Evaluation for Aquatic-Feeding Birds and Mammals
Table 5-4	Step 3A Food Web Model – Evaluation for Aquatic-Feeding Birds and Mammals

Appendices

Appendix A	Photo Documentation of Downstream Area
Appendix B	Threatened and Endangered Species and National Wetland Inventory Documentation
Appendix C	Off-site Sediment and Surface Water Sampling Results
Appendix D	Summary of Chemicals of Potential Ecological Concern Selection
Appendix E	Evaluation of Aquatic-feeding Birds and Mammals

List of Acronyms and Abbreviations

AUF Area Use Factor

BAF Bioaccumulation Factor

BSAF Biota-Sediment Accumulation Factor

BERA Baseline Ecological Risk Assessment

COPEC Constituent of Potential Ecological Concern

CSM Conceptual Site Model

CTDEEP Connecticut Department of Environmental Protection

DDx Total sum of DDD + DDE + DDT

EPC Exposure Point Concentration

ERA Ecological Risk Assessment

GHS Greenwich High School

HHRA Human Health Risk Assessment

HMW High Molecular Weight

HQ Hazard Quotient

LOAEL Lowest Observed Adverse Effect Level

LMW Low Molecular Weight

NOAA National Oceanic and Atmospheric Administration

NOAEL No Observable Adverse Effect Level

NWI National Wetland Inventory

PAH Polycyclic Aromatic Hydrocarbon

PCBs Polychlorinated Biphenyls

PEC Probable Effect Concentration

PEL Probable Effect Level

SLERA Screening Level Ecological Risk Assessment

SMDP Scientific Management Decision Point

SQuiRT Screening Quick Reference Tables

SVOC Semi Volatile Organic Compound

TAL Target Analyte List

TEC Threshold Effect Concentration

TEL Threshold Effect Level

T&E Threatened and Endangered

TRV Toxicity Reference Value

UCL Upper Confidence Limit

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

VOC Volatile Organic Compound

1. Introduction

On behalf of the Town of Greenwich (Town), AECOM Technical Services, Inc. (AECOM) presents this aquatic screening level ecological risk assessment (SLERA) for Upper and Middle Milbrook Ponds along Greenwich Creek. These ponds, referred to herein as "the Downstream Area," are located off-site and downstream of the Greenwich High School (GHS) site ("Site") located at 10 Hillside Road in Greenwich, Fairfield County, Connecticut (Figure 1-1). A SLERA for the aquatic habitat at the Site was previously completed (AECOM, 2013). This evaluation of potential risk to the environment posed by sediment and surface water in the off-site Downstream Area is intended to supplement the evaluation presented in the 2013 SLERA, which addressed environmental impacts in West Brothers Brook, and is presented as a SLERA Addendum. For consistency, methods and approaches in this Addendum are the same as those presented in the 2013 SLERA. The data used in this Addendum are based on sampling of eenvironmental media (i.e., surface water and sediment) in West Brothers Brook and Greenwich Creek performed in 2013 and 2014, respectively. The 2013 SLERA and this Addendum supplement the Remedial Investigation (RI) (AECOM 2012a) and Human Health Risk Assessment (HHRA) (AECOM 2012b) for the Site. These investigations and data analysis tasks in total are being conducted to support the development of the final Remedial Action Plan for the Site.

The SLERA Addendum presented herein was specifically conducted to address potential ecological impacts related to exposure to Site-related constituents that may have migrated downstream and off-site to the surface water and sediment of Upper and Middle Milbrook Ponds. In addition to the Upper and Middle Milbrook Ponds, sediment and surface water samples were collected from North Pond, which is located upstream of the confluence of West Brothers Brook and Greenwich Creek (**Figure 1-1**), and from locations further upstream on West Brothers Brook. North Pond and the upstream West Brothers Brook samples serve as background/reference conditions ("Background") for the Milbrook Ponds in the Downstream Area.

The 2013 SLERA evaluated the potentially complete exposure pathways for upland (terrestrial) ecological habitat and determined that the pathways are limited or absent at the Site, which is an operating high school. Since the pathway for migration of Site constituents to the Downstream Area is within the aquatic system, potential exposure to upland soil is not a potentially significant exposure pathway and is therefore not addressed.

1.1 ERA Process

The Connecticut Department of Energy and Environmental Protection (CTDEEP) currently does not have state guidance for conducting ecological risk assessments (ERA) but relies on United States Environmental Protection Agency (USEPA) guidance. Therefore, ERA activities will be conducted in accordance with relevant federal guidance, including the following:

- Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (USEPA, 1997);
- Guidelines for Ecological Risk Assessment (USEPA, 1998); and
- · Intermittent "ECO Update" Bulletins of USEPA (2001).

A SLERA is considered the first tier of the ERA process and is designed to serve as Steps 1 and 2 of USEPA's eight-step ERA process (USEPA, 1997) (**Figure 1-2**). Each successive tier of ERA requires more detailed and quantitative data analysis and interpretation. Conducting assessments in a tiered, step-wise manner allows the risk assessor and risk manager to maximize the use of available information and sampling data, while providing the opportunity to reduce uncertainties inherent in the ERA process through the use of focused supplemental data collection to fill key data gaps identified in the previous tier of the assessment, as necessary.

The purpose of the SLERA is to provide a general indication of the potential, or lack thereof, of ecological risk (USEPA, 2001), and as such, conservative assumptions are used in the SLERA to estimate the potential for risks to ecological receptors in order to determine the need for additional site-specific risk assessment through a Baseline Ecological Risk Assessment (BERA). The outcome of the SLERA is to identify the constituents of potential ecological concern (COPECs) and pathways that warrant further evaluation based on comparisons to conservative

screening levels. As indicated by the USEPA (2001), "SLERAs are not designed nor intended to provide definitive estimates of actual risk, generate cleanup goals and, in general, are not based upon site-specific assumptions."

Consistent with the 2013 SLERA, following the Step 2 screening, an additional step (i.e., Step 3A) will be conducted to refine the list of COPECs based on site specific significance. Step 3A honors the iterative ERA process outlined in ERAGS (USEPA 1997) and Guidelines (USEPA 1998) and implements more recent USEPA guidance (USEPA 2001) that focuses on the refinement of COPECs outside the context of a BERA (USEPA Step 3).

In accordance with USEPA guidance and process documents, the principal components of the SLERA Addendum include the following:

- <u>Problem Formulation</u>: In this phase, the objectives of the ERA are defined, and a plan for characterizing and analyzing risks is determined. Available information regarding stressors and specific sites is integrated.
 Products generated through problem formulation include assessment endpoints and the conceptual site model (CSM).
- Risk Analysis: During the risk analysis phase of work, data are evaluated to characterize potential ecological exposures and effects.
- Risk Characterization: During risk characterization, exposure and stressor response profiles are integrated through risk estimation. Risk characterization also includes a summary of uncertainties, strengths, and weaknesses associated with the risk assessment.

The outcome of Step 3A of this SLERA Addendum is the identification of COPECs that are responsible for the majority or all of reported risk (i.e., risk drivers) for associated media and ecological receptors of the off-site downstream area of the Site. At the end of Step 3A, a scientific management decision point (SMDP) is reached to inform risk management decisions regarding how to proceed and is based on a determination that either (1) the available data indicate the potential for ecological risk and further investigation is warranted, (2) the available data indicate either no or low potential for ecological risk and no further work is warranted, or (3) there are data gaps that must be addressed before the presence or absence of risk can be concluded (e.g., additional sampling or analysis).

1.2 SLERA Organization

The following sections are included in this SLERA Addendum:

- Section 2, Site Conditions, provides a summary of current conditions and available data of the off-site downstream areas of Greenwich Creek
- Section 3, Problem Formulation, summarizes and identifies key ecological communities, receptors, appropriate Step 2 (and Step 3A) assessment and measurement endpoints, and the process for determining Site COPECs.
- Section 4, Exposure and Toxicity Assessment, presents sources, procedures, and assumptions for exposure and toxicity parameters applied in Steps 2 and 3A.
- Section 5.0, Risk Characterization, presents the methods and process to describe risk estimates assuming Steps 2 and 3A toxicity and exposure assumptions.
- · Section 6.0, Uncertainty Analysis, presents a summary of the sources of uncertainty inherent to ERAs.
- Section 7.0, Risk Conclusions, presents a summary of the risk results and conclusions based on consideration of the Step 3A refinement of COPECs risk characterization and uncertainty analyses.
- · Section 8.0, References, provides the sources of information used in the SLERA Addendum.

2. Site Conditions

The Site is located at 10 Hillside Road in Greenwich, Fairfield County, Connecticut, at approximately 73.61 degrees west longitude and 41.04 degrees north latitude. Information obtained from the Town of Greenwich Tax Assessor's office indicates that the Site is owned by the Town and occupies 54.75 acres. The focus of the 2013 SLERA was West Brothers Brook, which passes through the Site and discharges to Greenwich Creek immediately south of U.S. Highway 1, approximately 200 feet downstream of North Pond and approximately 900 feet upstream of Upper Milbrook Pond. The Downstream Area is located immediately south of the Site along Greenwich Creek (Figure 2-1). Upper and Middle Milbrook Ponds were part of the study area and were sampled; Lower Milbrook Pond was not sampled. Greenwich Creek discharges to Long Island Sound via Indian Harbor downstream of Lower Milbrook Pond.

2.1 Current and Future Land Use

The three Downstream Area ponds are located along Greenwich Creek south of East Putnam Avenue in between Woodside Drive to the east and West Brother Drive to the west. The ponds are surrounded by residential properties. A private golf course (Milbrook Club) borders Middle Milbrook Pond and the southern end of Upper Milbrook Pond to the east. The reasonably anticipated future land use at and surrounding the Downstream Area is expected to remain unchanged from current use.

2.2 Previous Investigations

The following summary was provided in the 2013 SLERA and outlines the investigations performed at the Site to date. The reports and supporting information presented below have previously been made available to federal and state regulators and released to the public and are available at the Greenwich Public Schools Environmental Testing webpage (GPS, 2017). Please refer to the RI for full detail regarding these investigations.

- Diversified Technology Consultants (DTC) site wide surface soil sampling (July and August 2011) focused investigation on the grass-covered athletic fields, grass-covered areas surrounding the athletic fields, and grass and soil covered areas on the southern portion of the Site.
- DTC Phase I ESA for the Site (August 2011) summarized site historical information and identified nine areas of concern (AOCs). The Phase I ESA recommended that additional site investigation activities be performed;
- Interim Remedial Measures (IRMs) (September 2011) IRMs were performed to allow for safe access to the athletic fields.
- AECOM soil investigation (October and November 2011) conducted in support of the MISA construction activities. Several reports were generated based on this investigation:
 - o MISA Investigation Report, AECOM, January 23, 2012.
 - o Soil Remedial Action Report, AECOM, January 23, 2012.
 - Soil Remedial Action Report Addendum, AECOM, April 20, 2012.
 - Town of Greenwich Response to the EPA, Town of Greenwich, August 16, 2012.

- AECOM site wide investigation (December 2011) investigation activities included collection of surface and subsurface soil samples, installation of groundwater monitoring wells, groundwater sampling, and sampling of surface water and sediments from the West Brothers Brook and Cider Mill Pond.
- AECOM drinking water supply and well surveys (March 2012) conducted for all properties abutting the GHS Site and within a guarter-mile of the property boundary.
- AECOM supplemental site wide investigations (February and April 2012) Investigation activities included
 collection of surface and subsurface soil samples, installation of additional groundwater monitoring wells,
 and collection of groundwater samples from new and existing wells.
- AECOM supplemental site wide investigation in June and July 2012 Investigation activities included collection of surface and subsurface soil samples, installation of additional groundwater monitoring wells, collection of groundwater samples from new and existing wells, collection of sediment and surface water samples from West Brothers Brook and Cider Mill Pond, collection of ambient air samples site-wide, and collection of soil vapor samples from beneath and near the high school buildings.

2.3 Ecological Characteristics

The focus of this SLERA Addendum is on the aquatic habitats of Upper and Middle Milbrook Ponds, where Siterelated constituents could have migrated and been deposited. Upland (terrestrial) habitat adjacent to the ponds is limited in extent by developed residential areas, as impervious cover and maintained areas make up the majority of the upland habitat, which includes buildings, paved parking areas, manicured/landscaped lawns and golf course, all with minimal ecological habitat. Ecological habitat in these areas is either entirely absent or consists of limited areas of suburban landscape and in narrow and discontinuous wooded corridors. Animal life is limited to occasional foraging by urbanized birds and mammals. In addition, migration of Site-related constituents from Greenwich Creek to upland habitat is not considered a complete pathway. Therefore, terrestrial areas are not evaluated in this SLERA Addendum. Ecological habitat is limited to the aquatic habitat associated with the two Milbrook Ponds in the Downstream Area. Photographs taken during the 2014 sampling event are presented in Appendix A.

2.3.1 Site Exposure Areas and Habitat

The Downstream Area is composed of three ponds (Upper Milbrook, Middle Milbrook and Lower Milbrook) connected by Greenwich Creek downstream of the confluence with West Brothers Brook. Greenwich Creek flows from the north passing under East Putnam Ave and into North Pond upstream of the confluence with West Brothers Brook. From North Pond, Greenwich Creek continues south, combining with West Brothers Brook (which flows through urban residential areas upstream of the Site and the Site itself) and flowing through a concrete-lined reach into Upper Milbrook pond. Upper Milbrook Pond extends approximately 1,700 feet south to a weir, which is the outlet to Middle Milbrook Pond, an approximately 375-foot long pond between Upper and Lower Milbrook Ponds. Lower Milbrook Pond extends over a half mile further south to the outlet under Davis Avenue toward Indian Harbor, which in turn discharges to Captain Harbor of Long Island Sound.

Upper Milbrook Pond

Upper Milbrook Pond is approximately 500 meters in length, varies in width between 80 and 100 meters, narrowing to approximately 20 meters near the southern and northern ends. The shoreline is bordered by residential properties with maintained/landscaped lawns, although some tree cover along the edge of water exists. The pond, although long, is relatively shallow with large amounts of leafy debris covering the bottom. The pond contains macrophytes and algae populations. Pesticide application signs were observed on properties bordering the pond.

Middle Milbrook Pond

Middle Milbrook is located below the outlet of Upper Milbrook Pond and flows along the western edge of a small park until it passes under West Brother Drive. The Milbrook Club is located to the east of the pond. The pond is narrow

and comparatively deeper with a concrete ledge along the western side. Pond sediment is dominated by silt. Large amounts of leafy debris and algae exist throughout the pond. Two freshwater mussels, Eastern Floaters (Pyganodon cataracta), were recovered during sampling in October 2014.

Background

Sediment and surface water samples were collected upstream to define background reference conditions for the Upper and Middle Milbrook Ponds. One sample was collected in North Pond, a small pond (0.41 acres according to the National Wetland Inventory [NWI]) on a residential property south of East Putnam Ave. Water from Greenwich Creek flows from the north under East Putnam Ave into the pond and exits the pond over a small weir to the west. North Pond is approximately 200 feet upstream of the confluence of West Brothers Brook and Greenwich Creek. Due to the flow pattern, the pond bottom nearest the southern edge is largely scoured and armored with gravel, whereas leaf litter, milfoil and algae are found in the pond center. Sediments collected from the central western portion of the pond were observed as fine to coarse sand with trace amounts of silt. The edge of the pond is delineated by artificially placed stones.

Four additional sediment and surface water samples were collected from West Brothers Brook upstream of the Site (Figure 2-1). These data were collected to supplement the understanding of background conditions for West Brothers Brook on the Site.

2.4 Sensitive Species and Habitats

Based on consultation with the U. S. Fish and Wildlife Service (USFWS) and the CTDEEP (for state-listed species), and site-specific assessment of potential habitat, no state and federally listed species were identified as a potential species expected to occur at or in association with the Site or its environs (AECOM, 2013). **Appendix B** provides a listing of threatened and endangered (T&E) species provided by CTDEEP and USFWS known to occur in Fairfield County and the assessment to determine potential Site T&E presence. Given the proximity of the Downstream Area to the GHS Site, it is not expected that sensitive species or habitats are present.

The presence of wetlands at or near the Site was also reviewed, via a desktop analysis, based on examination of data available from the USFWS National Wetland Inventory (NWI). **Appendix B** provides a NWI map showing the two Milbrook Ponds and other nearby water bodies. Upper and Middle Milbrook Ponds are classified as lacustrine limnetic systems that are permanently flooded and diked or impounded. No areas of emergent wetlands (or other environmentally sensitive areas) are known to be present in the area (at or within one-half mile of the Site). In the Background Area, North Pond is designated as a palustrine unconsolidated bottom, permanently flooded and excavated water body.

The focus on the NWI is to make available to the public inventoried wetland area maps and/or digital database resources that apply the USFWS wetland classification system, which describes key wetland attributes. The NWI also provides projections and reporting on national wetland trends. Review of the NWI is a preliminary step in establishing a need to conduct a "ground truth" survey and/or a detailed wetland delineation study (i.e., should emergent wetland areas be identified) per state and/or federal (i.e., United States Army Corps of Engineers) guidelines.

3. Problem Formulation

3.1 Objective

The primary objective of the SLERA Addendum is to evaluate the available data to determine whether or not the potential is present for risks posed to ecological receptors by Site-related constituents that may have migrated downstream. Problem formulation is the initial step of the SLERA process in which the Downstream Area conditions are characterized by assessing the potential for ecological habitat and ecological receptors and identifying Site-related constituents. The information collected during problem formulation is used to develop a CSM describing the potential exposure pathways and ecological receptors to be considered in the SLERA. The following parameters will be addressed in the problem formulation:

- Ecological fate and transport pathways and media of concern;
- Key habitats and receptors;
- Assessment and measurement endpoints;
- Conceptual Site Model; and
- Determination of site COPECs

3.1.1 Ecological Fate and Transport Pathways and Media of Concern

The potential migration pathways by which ecological receptors may be exposed to Site-related chemicals in the Downstream Area includes overland surface flow/erosion following precipitation events, particularly during the filling of the wetlands and construction of the athletic fields at GHS, and potentially includes leaching of contaminants from Site soil to groundwater and subsequent groundwater discharge to surface water of West Brothers Brook. Site-related contaminants present in surface water and sediment from West Brothers Brook have the potential to flow downstream to the Milbrook Ponds. The following media and pathways are considered potentially complete and significant for ecological exposure:

- Surface water, direct contact/indirect contact This pathway is potentially complete for aquatic/semiaquatic wildlife receptors and assumes exposure via direct contact with surface water in the Downstream Area and indirect exposure via ingestion of biota (e.g., (non-rooted) aquatic plants and invertebrates).
- Sediment, direct contact/indirect contact This pathway is potentially complete for benthic (sediment-dwelling) and aquatic/semi-aquatic receptors and assumes exposure via direct contact with sediment in the Downstream Area and indirect exposure via ingestion of sediment-dwelling biota (e.g., rooted aquatic plants and benthic invertebrates).

Potentially complete and significant pathways are put into the context of applicable assessment and measurement endpoints as discussed below.

3.1.2 Key Habitats and Receptors

The key habitat identified in the vicinity of the Downstream Area is limited to aquatic habitat. As such, the following representative ecological receptors will be evaluated in the SLERA:

- Aquatic receptors:
 - Aquatic Community (plants, invertebrates, and fish);
 - o Amphibian Community (larvae);
 - o Pelagic fish through ingestion and direct contact with surface water,
 - o Benthic Community (invertebrates);
 - Great Blue Heron (piscivorous bird);
 - o Mallard (omnivorous bird); and

- o Muskrat (herbivorous mammal).
- Semi-Aquatic receptors (evaluated for aquatic exposure):
 - o Mink (carnivorous/piscivorous mammal); and
 - o Raccoon (omnivorous mammals).

Rationale for selection of each of these receptors is provided in **Table 3-1**.

3.1.3 Assessment and Measurement Endpoints

Ecologically-based assessment endpoints and measures of effects are designed to evaluate potential ecotoxicological effects associates with exposure to identified COPECs. Assessment endpoints describe the characteristics of an ecosystem that have an intrinsic environmental value to be protected (i.e., protection of a fish community; no potential risk to endangered species). Because assessment endpoints often cannot be measured directly, a set of surrogate measurement endpoints are generally selected for ecological risk assessment that relate to the assessment endpoints but have measurable attributes (e.g., comparison of media concentrations to screening levels) (USEPA 1997, 1998). These measurement endpoints provide a quantitative metric for evaluating potential effects of constituents on the ecosystem components potentially at risk. The following assessment and measurement endpoints have been identified for the SLERA Addendum:

- Assessment Endpoint 1 Protection and maintenance of aquatic invertebrate, aquatic plant (rooted and free-floating), amphibian and fish communities typical of comparable Connecticut aquatic habitats with similar morphology and hydrology.
 - Measure of Effect 1 Comparison of surface water concentrations to surface water screening values. Concentrations above the screening values are considered indicative of a potential for ecological risks.
- Assessment Endpoint 2 Protection and maintenance of benthic invertebrate and fish communities typical
 of comparable Connecticut wetland habitats.
 - Measure of Effect 2 Comparison of sediment concentrations to sediment screening values.
 Concentrations above the screening values are considered indicative of a potential for ecological risks.
- Assessment Endpoint 3 Protection and maintenance of birds and mammals within the study area typical of comparable Connecticut urban aquatic habitats.
 - Measure of Effect 3 Comparison of modeled dietary intakes for birds and mammals using sediment and surface water COPEC concentrations and modeled tissue COPEC concentrations with literature-based ingestion screening values.

3.1.4 Conceptual Site Model

The CSM presented in **Figure 3-1** describes the origin, fate, and transport of contamination from the Site, and exposure pathways and receptors of concern within the Downstream Area. **Figure 3-2** provides a food web model that further defines the CSM. As depicted in these figures, the potentially complete exposure pathways for ecological receptors are associated with sediment and surface water in the Downstream Area and were determined to exist for:

- · Aquatic invertebrates and amphibian larvae through direct contact with surface water,
- Aquatic plants through root uptake of surface water,
- · Benthic fish through ingestion and direct contact with sediment and ingestion of surface water,
- · Benthic invertebrates through direct contact with sediment, and,
- Bioaccumulation and ingestion of contaminated food items by birds and mammals.

3.2 Determination of COPECs

The target analyte list (TAL) for the Downstream Area was defined based on the TAL determined for the 2013 SLERA. Site history and background information is detailed in the RI (AECOM 2012a). The TAL includes metals,

semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and pesticides.

3.2.1 Dataset

The surface water and sediment dataset used in this SLERA Addendum were collected from the Downstream Area in October 2014 and from the upstream locations in West Brothers Brook in July 2013. Five co-located surface water and surface sediment samples were collected from Upper Milbrook Pond and Middle Milbrook Pond (**Figure 2-1**). In the Background Area, one location in North Pond was sampled, and four locations were sampled in West Brothers Brook. Sediment samples were collected from the upper 6 inches after removing leaf litter and other surficial debris. Surface water samples were collected from mid-depth of the water column and were field-filtered for metals analysis. The dataset has been validated and the analytical data have been determined to be adequate for risk assessment purposes. The analytical data used in the SLERA Addendum are presented in **Table 3-2**, and a summary of the investigation activities and results are provided in **Appendix C**.

3.2.2 COPEC Screening Process

The COPEC screening process is implicit in the overall ERA process, which serves to focus on only those COPECs that are likely to result in exposures producing the potential for unacceptable risk. Inherent in the COPEC screening process is defining the initial set of COPECs by comparison of maximum detected site concentrations to conservative screening concentrations protective of ecological receptors. **Figure 3-3** presents the site-specific COPEC selection process, consistent with USEPA guidance. All COPECs identified in this process were carried forward for development of Step 2 risk estimates. Non-detected analytes with the maximum reporting limit (MRL) in excess of applicable screening levels are addressed in the uncertainty analysis.

3.2.2.1 Calculated Totals

To accommodate those classes of analytes for which screening levels and/or toxicity data are available on a total basis, analytical results for individual constituents (e.g., isomers, congeners, or homologues) were summed. Only detected constituent concentrations were included in the total calculation; non-detected constituents were treated as zeros for the calculation of the sum. In cases where no individual constituents were detected, the total concentration is treated as a "non-detect" and represented by the highest reporting limit for individual constituents. Based on the constituents detected in sediment in the Downstream Area, the following chemical constituents were summed:

Parameter	Constituent Parameters			
Polycyclic Aromatic Hydrocarbo	Polycyclic Aromatic Hydrocarbons			
Total High Molecular Weight (HMW) PAHs	benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3,-c,d)pyrene, and pyrene			
Total Low Molecular Weight acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, phe and 1- and 2-methylnaphthalene				
Total PAHs	acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3,-c,d)pyrene, naphthalene, phenanthrene, pyrene; and 1- and 2-methylnaphthalene			
Pesticides				
Total DDx	4,4'-dichlorodiphenyltrichloroethane (4,4'-DDT),			
	4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE),and			
	4,4'dichlorodiphenyldichloroethane (4,4'-DDD)			

3.2.2.2 Ecological Screening Levels

The sources and hierarchy for selection of screening levels for application in the COPEC screening process are presented in **Table 3-3** for all target analytes. The primary sources include:

- For sediment, screening levels are derived from the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRT) tables (Buchman 2008); and
- For surface water, screening levels are derived from Connecticut Water Quality Standards (CTDEEP 2011) and National Ambient Water Quality Criteria (USEPA 2010).

Additional sources and hierarchy of selection are detailed in Table 3-3.

3.2.2.3 COPEC Screening Results

The complete COPEC evaluation conducted by medium for all detected and non-detected analytes is presented in **Appendix D**. Detected COPECs were retained for quantitative evaluation in the Step 2 SLERA and include the following in the Upper and Middle Milbrook Ponds:

- Surface water -
 - Two metals (barium and copper)
- Sediment :
 - o Ten metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, vanadium, and zinc); and PAHs (as total HMW PAHs, total LMW PAHs, and total PAHs).

4. Exposure and Toxicity Assessment

The risk analysis phase of the SLERA is based on the CSM developed in problem formulation. Risk analysis includes the characterization of potential ecological exposure and corresponding effects. The ecological exposure assessment involves the identification of potential exposure pathways and an evaluation of the magnitude of exposure or identified ecological receptors. The ecological effects evaluation describes the potential adverse effects to ecological receptors from exposure to COPECs in environmental media. Benthic invertebrates are evaluated on a community-level basis and are exposed to potentially affected media on a continuous basis, whereas wildlife are evaluated on an individual basis and are generally more mobile and, thus, exposed to potentially affected media on an intermittent basis. The following sections describe the sources and methods for quantifying exposure and toxicity.

4.1 Ecological Exposure Assessment

The exposure assessment presents the assumptions and parameters used to develop estimates of exposure. Per USEPA (1997) guidance, the SLERA is an evaluation based on conservative assumptions and is intended to eliminate COPECs with no potential to cause risk. To this end, the Step 2 initial COPEC screening serves to identify indicators of potential risk. A more-detailed Step 3A refinement of COPECs evaluation (USEPA 2001, 1997) allows for the identification and characterization of current and future risk using site-specific assumptions, and ultimately serves to define the scope for additional ERA tiers (e.g., baseline ERA) or as the basis for risk-based decisions.

Table 4-1 defines the specific differences in exposure assumptions used for the Step 2 screening and Step 3A refinement of COPECs and indicates where the site-specific and receptor-specific values are implemented in the SLERA process. Each exposure parameter is described in more detail in the following subsections.

4.1.1 Community-based Receptor Exposure

Community-based receptors are assumed to be exposed to contaminants on a continuous basis. For example, aquatic plant communities experience direct uptake via roots and/or foliage. Assessing contaminant exposure in ecological communities is, therefore, based upon the integration of all exposures into a single criterion for the media of exposure (i.e., the screening benchmark).

4.1.2 Wildlife Receptor Exposure

Ingested doses to wildlife receptors are modeled using exposure point concentrations (EPCs) along with exposure parameters for a given representative receptor. The following generalized equation was used to evaluate the total daily dose (TDD) for each wildlife receptor from all sources (i.e., prey items, drinking water, and incidental ingestion) for each COPC:

```
TDD = \Sigma([IR_f \times C_f] + [IR_s \times C_s] + [IR_w \times C_w]) \times ED \times AUF,
```

Body Weight

where:

TDD = Total daily dose (mg/kgbody weight/day)

IR_f = Ingestion rate of food (kg_{ww}/day),

IR_s = Incidental ingestion rate of sediment (kg_{dw}/day),

 $IR_w = Ingestion rate of water (L/day),$

C_f = Concentration of COPC in prey (mg_{ww}/kg),

C_s= Concentration of COPC in sediment (mg_{dw}/kg),

 C_w = Concentration of COPC in water (mg/L),

ED = Exposure duration (fraction of time receptor spends within exposure area), and

AUF = Area use factor (ratio of the receptor's home range, etc., relative to the size of exposure area).

4.1.3 Bioaccumulation Factors

Bioaccumulation factors (BAFs) are used to estimate prey tissue concentrations in the absence of empirical, site-specific data. This estimate is based on the product of the BAF and media concentration. BAFs were developed for each of the following biota: aquatic plants, sediment invertebrates, and fish. The BAFs for site-specific COPECs are presented in **Table 4-2** and are consistent with the BAFs used in the 2013 SLERA. The BAFs and hierarchy of sources for quantitatively evaluated media are summarized below.

- Soil/Sediment to Plant BAF. For metals and inorganics, the BAFs developed by Bechtel-Jacobs (1998a) are used as the primary source. Organic BAFs are modeled per the uptake relationship based upon the octanol water partitioning coefficient (Kow) developed by USEPA (2005) where applicable. Estimated plant uptake values (constants) are computed using the following relationship for analytes having a log Kow between 3 and 8:
- Log BAF_{soil/sediment to plant} = 1.781 0.4057 * log K_{ow} (USEPA 2005)
- For those analytes with log Kow outside of this range, the relationship presented is used, as cited in EPA (1999).
- Sediment to Benthic Invertebrate BAF. Uptake factors for sediment to benthic invertebrates for inorganics are based on values obtained from Bechtel-Jacobs (1998b). Organic BAFs (or rather biota-sediment accumulation factors [BSAFs] for invertebrates) are derived from EPA's Biota-Sediment Accumulation Factor Data Set (EPA 2012) or EPA's 2nd Edition of the National Sediment Quality Survey (EPA 2004) where available. For other organics lacking applicable values, a default value of 1 is used.
- Surface Water to Fish BAF. Uptake factors for surface water to fish are based on values obtained from EPA 2002 (National Recommended Water Quality Criteria), California Office of Environmental Health Assessment (OEHHA 2012), and USEPA's EPI Suite database (EPA 2011a).
- Sediment to Fish BSAF. Uptake factors for sediment to fish (BSAFs) are based on values obtained from USEPA's EPI Suite database (USEPA 2011a) or USEPA's 2nd Edition of the National Sediment Quality Survey (USEPA 2004).

4.1.4 Life History Parameters

Life history parameters and exposure factors for wildlife receptors were derived from USEPA (2005, 1993) or calculated using the relationships cited therein. The life history parameters for wildlife receptors quantitatively evaluated in the SLERA Addendum are presented in **Table 1** of **Appendix E** and are consistent with those used in the 2013 SLERA.

Other pertinent parameters in assessing exposure are area use factors (AUF) and absorption factors (or bioavailability). The AUF is the site-specific ratio of the defined exposure area to the total area of foraging or home range of the receptor. Foraging areas obtained from EPA (1993) and other literature sources were applied to the site-defined exposure area(s). To return conservative estimates of risk, 100 percent bioavailability (i.e., AUF=1) of site COPECs is assumed for the Step 2 evaluation. For Step 3A, an AUF of less than 1 is calculated if the home or foraging range exceeds the approximate area of the Downstream Area. Bioavailability issues are discussed qualitatively, as necessary, in the risk characterization and uncertainty analysis.

4.1.5 Exposure Point Concentrations

EPCs were estimated for sediment (0 to 6 inches deep) and surface water for each COPEC to evaluate the selected ecological exposure pathways and receptors. These EPCs represent the range of media concentrations that ecological receptors may encounter. Consistent with the 2013 SLERA, the Step 2 EPC is the maximum detected

concentration. In Step 3A, a central tendency estimate is typically used to represent the EPC. However due to the small sample size of sediment and surface water in the Downstream Area (n = 6), the maximum EPC is used in this step as well. The EPCs for sediment and surface water are presented in **Table 4-3**.

4.2 Ecological Effects Assessment

The purpose of the effects assessment phase is to identify screening ecotoxicity benchmarks to be used to evaluate media of concern. For the purposes of the SLERA, the benchmarks represent media-specific levels below which there is minimal risk to receptors. These ecological screening values are based on conservative endpoints and sensitive ecological effects data. They represent a preliminary screening of contaminant levels to determine if there is a need to conduct further analyses or investigations.

4.2.1 Surface Water Benchmark Screening

Fish may potentially be exposed to COPECs from direct contact with surface water. Potential risks to these receptors from COPEC exposure in surface water will be evaluated through comparisons of surface water data with literature-derived toxicity thresholds.

Table 3-3 presents the surface water screening levels, which are based on the same hierarchy of sources that were used in the 2013 SLERA at the GHS Site (AECOM, 2013), the primary sources being Connecticut Water Quality Standards (CTDEEP 2011) and National Ambient Water Quality Criteria (USEPA 2010).

4.2.2 Sediment Benchmark Screening

Benthic invertebrates may potentially be exposed to COPECs from direct contact with sediment. Potential risks to these receptors from COPEC exposure in sediment will be evaluated through comparison of sediment data with literature derived toxicity thresholds.

Table 3-3 presents the sediment screening levels, which are those used in the 2013 SLERA at the GHS Site (AECOM, 2013) The primary source for Step 2 thresholds is the effect (low) levels (e.g., threshold effect concentration [TEC]) from the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRT) tables (Buchman 2008). The Step 3A evaluation compares media concentrations to the sediment probable effect benchmark (e.g., probable effect concentration [PEC] or probable effect level [PEL]) instead of the threshold sediment levels. The probable effect concentration screening benchmark is the concentration above which some adverse effects may be expected in more than 50 percent of benthic communities. The probable effect sediment benchmarks were derived from a combination of sources (defined subsequently).

4.2.3 Wildlife Receptors

For wildlife receptors, two toxicity reference values (TRVs) were developed based upon ingested dose and appropriate toxicological effect endpoint(s) (i.e., reproduction and growth):

- A No Observed Adverse Effect Level (NOAEL)-based TRV applied in the Step 2 screening and Step 3A refinement of COPECs: and
- A Lowest Observed Adverse Effect Level (LOAEL)-based TRV applied in the Step 3A refinement of COPECs.

All TRVs were derived from recognized literature sources including (in order of preference) USEPA (2005), Sample et al. (1996), USEPA (1999), and others as available. The TRVs used for this evaluation are presented in **Appendix E**. The TRVs used in the SLERA Addendum are consistent with those from the 2013 SLERA.

All toxicity study-based doses were adjusted for study duration and toxicological endpoint to chronic NOAEL and chronic LOAEL TRVs by application of uncertainty factors (UF) as applicable per USEPA (1997). All UFs are presented in **Tables 3** and **4** of **Appendix E**. Refinement of the laboratory/study-based TRVs to the relevant ecological receptor using intertaxon extrapolation was not done due to the associated uncertainties. Ecological TRVs were developed separately for birds and mammals, and no extrapolation across taxonomic classes was

applied (i.e., mammalian toxicity data was not extrapolated to birds or vice-versa). COPECs without available toxicity data are discussed in the uncertainty analysis.

The TRV available for total PAHs for birds was developed from a study conducted by Patton and Dieter (1980) based on a PAH mixture, as there is a paucity of reliable individual PAH toxicity values for avian species. For mammals, a hazard quotient (HQ) was developed for LMW PAHs and HMW PAHs, as adequate toxicity data are available to make this distinction for mammals. A Hazard Index (HI) for PAHs, which approximates a total PAH risk level, is equal to the sum of the HQs for the LMW and HMW PAHs and is provided for comparative purposes for the evaluation of PAH risk to birds and mammals. This approach is consistent with the 2013 SLERA and allows for equal comparison of mammals (TRVs available for LMW and HMW PAHs) and birds (TRV available for total PAHs).

5. Risk Characterization

The results of the risk analysis are analyzed and interpreted to determine the likelihood of adverse environmental effects and to determine whether a conclusion of no significant risk can be reached for each assessment endpoint evaluated. The ecological risk characterization summarizes the results of the risk analysis phase of work and provides interpretation of the ecologically significant findings, which form the basis to support the SMDP.

Potential risks to ecological receptors are evaluated by calculating screening HQs. Screening HQs are calculated for each constituent by comparing the maximum EPCs in each media in each study area to the appropriate screening level using the following formula:

Hazard Quotient (HQ) = EPC/Ecological Screening Level

For higher trophic level wildlife receptors, the risk estimate is also based on the HQ, defined as the dietary intake (or dose) of a COPEC divided by the species-specific TRV:

HQ = Dietary Intake/TRV

When the HQ is less than 1 (i.e., the concentration was less than the screening level), the constituent exposure is assumed to fall below the range considered to be associated with adverse effects for growth, reproduction, or survival of individual receptors, and no population level risks are assumed to be present, and thus, the exposure pathway can be eliminated from further BERA investigations. For HQ values greater than 1, the constituent is identified as a COPEC, and further evaluation of potential risk may be warranted to evaluate the potential for risk to ecological receptors.

The HQ is not a predictor of risk but rather is an index used to rule out potential risk. A HQ \leq 1 suggests that a given COPEC/receptor combination may be excluded from further consideration (i.e., potential risk is not likely). If the HQ is >1 then the potential for risk cannot be ruled out for the given assessment endpoint. Note also that the magnitude of the HQ is not comparable across assessment endpoints (i.e., a HQ of 10 for one receptor does not necessarily indicate worse effects than a HQ of 5 for another), as the underlying dose-response relationship is not linear nor comparable between species.

Except for PAHs, for which toxic effects are generally considered additive based on a general narcosis model of toxicity (Di Toro and McGrath 2000; Di Toro et al. 2000), a cumulative HI is not calculated (USEPA 1997). For mammals, the HI for PAHs is equal to the sum of the HQ for LMW PAHs and HMW PAHs. For birds, a HI is not necessary as a total PAH TRV is used to derive a HQ.

Risk estimates developed in Step 2 are not intended to serve as a basis for a SMDP but rather as a means to identify COPECs to be carried forward into the Step 3A refinement of COPECs analysis. For Step 3A, a risk estimate was computed based on site-specific exposure assumptions that consider the full distribution of exposure and effect (e.g., in Step 3A, wildlife risks are bounded by toxicity study duration endpoints based on a NOAEL-based and a LOAEL-based HQ). This provides a range of potential risks. Both Step 2 and Step 3A risk estimates are tabulated and presented in the SLERA.

The outcome of the Step 3A refinement of COPECs represents a SMDP that provides the basis for risk management decisions for the Site. The Step 3A refinement of COPECs risk characterization criteria for key assessment endpoints are summarized below:

Potential risk to wildlife species exposed to sediment, prey, and surface water are based on the Step 3A HQs (or the HI for PAHs for mammals). Exceedance of a HQ=1 (or mammalian HI=1 for PAHs) suggests that risk cannot be ruled out. Potential for risk that cannot be excluded based on the HQ is discussed further in the uncertainty analysis, in which additional factors are considered in qualifying the estimated risk, if applicable. Such factors include but are not limited to the contribution of local or regional background concentrations to the reported risk and bioavailability of COPECs based on dietary consumption.

Risk reported in the Step 3A risk characterization is carried forward for further consideration in the uncertainty analysis (Section 6.0). The uncertainty analysis provides a means to discuss the uncertainties related to interpretation of risk characterization results.

5.1 Step 2 Screening Level Ecological Risk Characterization

This section summarizes the risk characterization results for the selected assessment endpoints under the screening level exposure and toxicity scenarios.

5.1.1 Surface Water Evaluation (Assessment Endpoints 1 and 2: Aquatic Community and Amphibians)

Table 5-1 shows a summary evaluation of surface water data against aquatic life and amphibian screening levels. Surface water was analyzed for metals, pesticides, and PAHs. In the Downstream Area, there were two chemicals (barium and copper) detected in the downstream surface water:

- Barium was detected in all five samples with a maximum detected concentration of 135 ug/L, which
 exceeded the aquatic life screening level of 3.9 ug/L. There was no amphibian screening level available for
 comparison to barium.
- Copper was detected in three of the five samples with a maximum detected concentration of 7.6 ug/L, which
 exceeded the aquatic life screening criteria of 4.8 ug/L. The maximum concentration of copper did not
 exceed the amphibian screening level of 15 ug/L.

The potential for unacceptable risk cannot be excluded from these COPECs, and as such, these COPECs are considered in Step 3A.

5.1.2 Sediment Evaluation (Assessment Endpoint 3: Benthic Invertebrate Community)

Table 5-2 shows the summary evaluation of sediment data against Step 2 and Step 3A screening levels protective of the benthic invertebrate community assessment endpoint. Only Step 2 evaluation is discussed in this section. Step 3A evaluation is discussed in Section 5.2. For the Step 2 screening level evaluation the appropriate screening level is the threshold effect level (TEL). Downstream surface sediment was sampled for metals, pesticides, PCBs (Aroclors), and PAHs. There were no PCBs detected in sediment.

Ten metals were detected in the downstream surface sediment and all exceeded the Step 2 TELs. The ten metals included (with maximum concentrations in parentheses): arsenic (14.2 mg/kg), barium (823 mg/kg), cadmium (2.83 mg/kg), chromium (95.5 mg/kg), copper (416 mg/kg), lead (305 mg/kg), mercury (0.577 mg/kg), nickel (57.2 mg/kg), vanadium (101 mg/kg), and zinc (508 mg/kg). The TELs for two metals (barium and vanadium) are the background sediment concentrations, and therefore potential toxicity cannot be predicted based on background exceedances (as described further in Section 5.2.2). The potential for unacceptable risk cannot be excluded from the ten aforementioned metals. These COPECs are considered in Step 3A.

Twelve individual PAHs were detected in downstream surface sediment. PAHs were evaluated on a total basis (i.e., total HMW PAHs, total LMW PAHs, and total PAHs were calculated). All total calculated PAHs exceeded the step 2 screening levels:

- The maximum calculated Total HMW PAHs (104 mg/kg) exceeds the Step 2 TEL of 0.193 mg/kg.
- The maximum calculated LMW PAHs (11.5 mg/kg) exceeds the Step 2 TEL of 0.0764 mg/kg.
- The maximum calculated total PAHs (116 mg/kg) exceeds the Step 2 TEL of 1.6 mg/kg.

The potential for unacceptable risk cannot be excluded for these COPECs. These COPECs are considered in Step 3A.

5.1.3 Sediment Evaluation (Assessment Endpoints 4, 5, 6, 7, and 8: Aquatic-feeding Mammals and Birds)

Table 5-3 presents the summary results of the Step 2 Downstream Area food web model with supporting calculations presented in **Appendix E**. The EPCs used in the Step 2 food web model evaluation are the maximum detected concentrations, because the limited dataset in the Downstream Area precluded meaningful calculation of central tendency values for sediment and surface water. In addition, 100 percent bioavailability (i.e., AUF=1) of site COPECs is assumed for the Step 2 evaluation. The Step 2 screening-level food web evaluation is based on highly conservative assumptions: continual (lifelong and year-round) exposure to the maximum concentration in the exposure area, NOAEL-based TRVs, and preferential feeding on the most contaminated food item.

For wildlife receptors, the following are the results of the food web calculations for the Downstream Area:

- Great blue heron
 - o NOAEL-based HQ for total PAHs exceeds 1.
- Mallard
 - NOAEL-based HQs for copper, lead, vanadium, and zinc exceed 1.
- Mink
 - NOAEL-based HQ for copper, total HMW PAHs, and total PAHs exceeds 1.
- Raccoon
 - NOAEL-based HQ for copper exceeds 1.
 - o NOAEL-based HQs for nickel, total HMW PAHs and total PAHs slightly exceed 1.
- Muskrat
 - NOAEL-based HQ for total HMW PAHs and total PAHs slightly exceeds 1.

These results indicate minimal risks to wildlife receptors in the Downstream Area, and risks cannot be eliminated for PAHs (heron, mink, raccoon, and muskrat), copper (mallard, mink and raccoon), lead (mallard), vanadium (mallard) and zinc (mallard). These results do consider site-specific area use factors for receptors or background or upstream conditions for these COPECs.

5.2 Step 3A Refinement of COPEC

In the refinement of COPEC step, exceedances of Step 2 screening criteria are further evaluated based on modifying factors. These include:

- Consideration of background where available. Regional literature-based background concentrations are considered as applicable.
- · The comparison against probable effect sediment levels.

The consideration of an area average EPCs for sediment and surface water was not appropriate due to the low detection frequency and total number of samples available. Therefore, the calculation of a central tendency value (i.e., 95% upper confidence limit [UCL]) was not completed and the EPCs used in the Step 3A evaluation are the maximum detected concentrations. Similarly, the food web model evaluation defaults to the maximum detected concentrations and is carried out with conservative exposure parameters. The Step 3A food web model presents evaluations based on LOAEL-based TRVs, and the Maximum Allowable Toxicant Concentration (MATC)-based TRVs.

5.2.1 Surface Water Evaluation (Assessment Endpoint 1: Aquatic Community)

Two metals (barium and copper) were carried through to the Step 3A assessment in the Downstream Area. There are no alternative screening levels to apply to surface water screening in Step 3A. The calculation of central tendency values was not appropriate due to the small number samples detected and total available dataset. Therefore, the maximum detected concentration was used for comparison. **Table 5-1** presents the results of the Step 3A evaluation for surface water.

Barium was detected in all five of the surface water samples in the Downstream Area at concentrations ranging from 119 to 135 ug/L, all of which exceed the aquatic life screening level (3.9 ug/L). There is no amphibian screening level available for barium. Copper was detected in three of the five surface water samples collected in Upper Milbrook Pond (two of the four samples) and one sample from Middle Milbrook Pond, ranging from 5 to 7.6 ug/L. All three of the detected concentrations slightly exceeded the aquatic life screening level (4.8 ug/L); however none of the concentrations exceeded the amphibian screening levels (15 ug/L).

Surface water samples collected upstream in North Pond and in Greenwich Creek upstream of the Site are considered qualitatively to represent background/reference conditions. Concentrations of barium detected in all six background/reference samples ranged from 85.8 to 122 ug/L, all of which exceed the aquatic life screening level. Concentrations of barium in the Downstream Area are not significantly above the range of background concentrations and is consistent concentrations detected immediately upstream of the Site. Therefore, concentrations of barium may represent local background (uniform enrichment noted in soil and sediment [Section 5.2.2]). The potential for unacceptable risk is not expected, but cannot be dismissed based on current data.

Background/reference concentrations of copper ranged from 5.8 to 8.6 ug/L, which also exceed the aquatic life screening levels. The range of downstream Site concentrations is consistent with upstream background conditions. In addition, due to the low frequency of detection and inconsistency of detected sample origination, the potential for unacceptable risk is not expected.

5.2.2 Sediment Evaluation (Assessment Endpoint 3: Benthic Invertebrate Community)

Several metals and PAHs exceeded applicable Step 2 threshold (low) sediment levels. The calculation of central tendency values was not appropriate due to the small number of detections and total available dataset. Therefore, Step 3A evaluation compares maximum detected concentrations of COPECs identified in Step 2 against the probable (high) effect levels. **Table 5-2** presents the results of the Step 3A evaluation for sediment, including the probable effect screening levels.

In the Downstream Area, six out of ten metals (barium, copper, lead, nickel, vanadium, and zinc) have HQs above 1 when the maximum detected concentration is compared to probable effect screening levels. There are no threshold (low) and probable (high) levels available for barium or vanadium, so the screening levels for these two chemicals are based on background levels. The threshold level for barium is based on the background value per Buchman (2008), which was used for the initial screening. Connecticut soil is enriched in barium, with an average concentration of 400 mg/kg (USEPA 2005). Eastern U.S. barium levels range from 10 to 1500 mg/kg (average 420 mg/kg). The observed concentrations of barium are likely attributable to background conditions. Similarly, vanadium is compared to background value per Buchman (2008). Connecticut soil background for vanadium has an average concentration of 60 mg/kg (USEPA 2005) and eastern U.S. soil concentrations range from 7 to 300 mg/kg (average 66 mg/kg). Background concentrations of barium and vanadium detected in sediment samples collected upstream ranged from 40 to 111 mg/kg (barium) and 20.1 to 38.7 mg/kg (vanadium). Downstream Area sediment concentrations of barium and vanadium are elevated compared to upstream concentrations, but not compared to the published background levels for these metals. Therefore, the potential for unacceptable risk is not expected from barium and vanadium.

The range of concentrations for the remainder of the metals (copper, lead, nickel, and zinc) is at levels consistent with the range of sediment concentrations in West Brothers Brook and Cider Mill Pond but higher than background sediment concentrations measured in North Pond and upstream on Greenwich Creek. Therefore, consistent with the findings of the 2013 SLERA, the potential for unacceptable risk cannot be dismissed based on current data; however based on the conservative nature of the assessment, actual risks are not expected from metals in sediment.

When compared to probable effect levels, calculated total HMW PAHs, total LMW PAHs, and total PAHs results in HQs above 1.

Total HMW PAHs slightly exceeds the probable effect level of 6.5 mg/kg with a maximum concentration of 104 mg/kg.

- Total LMW PAHs exceeds the probable effect level of 5.3 mg/kg with a maximum concentration of 11.5 mg/kg.
- Total PAHs exceeds the probable effect level of 22.8 mg/kg with a maximum concentration of 116 mg/kg.

Several individual HMW PAHs were detected at levels that exceed the relative screening criteria. Only one individual LMW PAH (phenanthrene) was detected at all locations, and the remaining LMW PAH compounds were not detected or detected at just one location in Upper and Middle Milbrook Ponds. The concentrations of total LMW PAHs in the Milbrook Ponds are consistent with those measured upstream in West Brothers Brook and Cider Mill Pond. However, concentrations of total HMW PAHs and total PAHs are an order of magnitude higher in the Milbrook Ponds of the Downstream Area than the range of concentrations measured upstream on Site and are elevated compared to upstream background sediment concentrations. Background concentrations of total HMW and total PAHs exceeded the probable effect levels with concentration ranging from 0.28 to 26.4 mg/kg and 0.1 to 31.2 mg/kg respectively. North Pond and Mill Brook may receive roadway runoff containing PAHs which may be contributing to the concentration in the Millbrook Ponds of the Downstream Area. Therefore, the potential for unacceptable risk from total HMW PAHs, total LMW PAHs, and total PAHs cannot be dismissed based on current data.

5.2.3 Sediment Evaluation (Assessment Endpoints 4, 5, 6, 7, and 8: Aquatic-feeding Mammals and Birds)

Table 5-4 presents the summary results of the Step 3A food web model with supporting calculations presented in **Appendix E**. The Step 3A evaluation includes wildlife receptors for which potential risks were identified in the Step 2 evaluation. The majority of assumptions in the Step 3A food web are the same as for the Step 2 food web. The EPCs used in the Step 3A food web model evaluation are the maximum detected concentrations (same as Step 2), because the calculation of central tendency values for sediment and surface water was not appropriate due to the small number of detections and limited total available dataset for the Downstream Area. The TRVs used in the Step 3A are LOAEL-based TRVs and MATC- based TRVs (MATC-based TRVs are the geometric mean of NOAEL-and LOAEL-based TRVs).

Site-specific AUFs less than 1 were calculated for those receptors for which home or foraging ranges exceed the approximate aquatic habitat area of the ponds in the Downstream Area.

While the Step 3A food web model calculations include two levels of TRV, the results are based on the MATC-based TRVs.

For wildlife receptors, the following are the results of the Step 3A food web calculations for the Downstream Area:

- Great blue heron
 - All HQs are less than 1.
- · Mallard
 - o All HQs are less than 1.
- · Mink
 - o MATC-based HQ for total HMW PAHs slightly exceeds 1.
 - o MATC-based HI for total PAHs slightly exceeds 1.
- · Raccoon -
 - All HQs and total PAH HI are less than 1.
- Muskrat –

o All HQs and total PAH HI are less than 1.

Based on the Step 3A food web calculations for the Downstream Area, all MATC-HQs are less than 1 for the great blue heron, mallard, raccoon, and muskrat. The MATC-HQ for total HMW PAHs and MATC-HI for total PAHs calculated for mink slightly exceeds 1 (HQ = 1.3; HI = 1.3), but the LOAEL-HQ and LOAEL-HI are less than 1. These results indicate that the potential for unacceptable risks to wildlife receptors in the Downstream Area is not expected.

6. Uncertainty Analysis

The objective of the uncertainty evaluation is to discuss the assumptions of the SLERA process that may influence the risk assessment results and conclusions. Because a SLERA is designed to be overly protective in nature, there is a considerable amount of uncertainty associated with results from a SLERA. The uncertainty analysis provides a description of the nature of the uncertainties encountered in developing risk estimates and is an integral part of the ERA process as defined by USEPA guidance (1997a). Uncertainties built into the estimation of exposures and ultimately risks may act either to increase or decrease the identified risks, depending on the source of uncertainty.

Common sources of uncertainty include those related to the development of the CSM, the factors used to develop the risk estimate (e.g., exposure assumptions and toxicity assumptions), and uncertainty in the parameters used to evaluate risk (e.g., data gaps, EPC estimates). The common uncertainties associated with ERA are typically related to the following general categories:

- Data quality;
- Selection of COPECs;
- Exposure assessment;
- Development and Application of EPCs;
- Toxicity assessment; and
- Risk characterization.

Uncertainties associated with these ERA components account for the majority of potential limitations in risk assessment methodology and are described in sections below.

6.1 Uncertainties Associated with Data Quality

6.1.1 Accuracy of Analytical Measurements

Laboratory analysis of environmental samples is subject to a number of technical difficulties, and values reported by the laboratory may not always be accurate. The magnitude of analytical error is usually small compared to other sources of uncertainty, although the relative uncertainty increases for results that are near the detection limit. Constituents detected below the sample reporting limit but above the method detection limit (i.e., J-flagged data) lack sufficient precision in the reported concentration and are thus estimated concentrations. However, to minimize underestimation of site concentrations, J-flagged data were included, where applicable. Inclusion of these data in development of EPCs generally returns conservative exposure concentration and resulting risk estimates. Inclusion of these data in the SLERA is generally conservative and likely overestimates risk that is based in part or solely on these data. There was one rejected analysis for chlordane in an upstream sediment sample, but this does not affect the findings of the risk assessment, as upstream concentrations of this analyte are adequately represented by the other three samples.

Sediment data collection in the Downstream Area was conducted in the two ponds, all of which are depositional areas with areas of accumulated fine-grained sediments where contaminants are expected to reside. Because the data collection was focused on the two ponds, these data sets are expected to represent the worst-case scenarios for sediment quality in the Downstream Area, relative to the short, faster-flowing portions of Greenwich Creek that connect the ponds. Data sets containing these worst-case samples, particularly given that conclusions are based on the maximum detected concentration, will result in overestimation of risk.

6.1.2 Potential Data Gaps

Six samples collected upstream in North Pond and in Greenwich Creek upstream of the Site were considered qualitatively to represent upstream (off-site) conditions in West Brothers Brook surface water (i.e., as it enters the Site). In addition, literature-based regional background values for inorganic compounds in other media (soil) were considered, but may not be fully representative. It should be acknowledged that the soil background data applied for barium (and vanadium) in sediment were based on regional levels (per USEPA 2005) expected in Connecticut soil and were not specific to sediment. Use of these regional data to qualify risk may over- or under-estimate risk.

The actual contribution of background to risk estimates is unknown. Risk estimates are based on total exposure and are independent of background and, therefore, are unaffected by uncertainties in background. Therefore, risk conclusions based on a qualitative evaluation of the contribution of background to total risk may result in over- or under-estimate of risk.

6.2 Uncertainties Associated with Selection of COPEC

6.2.1 Detected Analytes with no Screening Levels or Other Numeric Assumptions

For some COPECs, partial toxicity information may exist for some receptor classes, but not others. As it is inappropriate to extrapolate TRVs between taxonomic classes, this was not done. Data gaps in toxicity information were partially addressed by using surrogate values derived from similar compounds. The use of surrogates introduces an unknown level of uncertainty in the risk estimates, especially for less similar compounds. **Appendix D** presents the determination of COPECs and identifies detected COPECs that lack applicable screening levels on a medium-specific basis. For community-level receptors, the absence of sediment screening threshold values may result in underestimation of risk to benthic organisms. It is important to note that the sediment screening concentrations for barium and vanadium are not toxicity-based but based on sediment background concentrations per Buchman (2008). Therefore, in the absence of applicable toxicity data, the potential for unacceptable risk cannot be fully assessed for these compounds.

A TRV is absent for total PAHs for mammals. However, applicable toxicity data are available for LMW and HMW PAHs, and the HQs for these were summed to create a total PAH HI. Therefore, the absence of a total PAH TRV for mammals does not result in risk uncertainty.

A number of analytes were retained as COPECs based solely on their status as bioaccumulative chemical compounds (BCCs) (see the COPEC selection summary tables in **Appendix D**). The process for COPEC selection was based on comparison to protective screening criteria. To remain conservative, detected compounds with the potential to bioaccumulate, but with detected concentrations below screening levels, were retained as COPECs. Inclusion of these constituents as COPECs may overestimate the potential risk.

Note that evaluation of potential risk to aquatic and benthic community receptors were based on overall effects and do not specifically consider uptake/accumulation. Therefore, some uncertainty surrounds conclusions drawn about potential risk from BCCs for these communities.

6.2.2 Uncertainties related to Non-Detected Analytes

Some of the analytes never detected in a given medium had MRLs in exceedance of the applicable screening level (**Appendix D**). Analytes that were never detected in any media were not retained as COPECs. This elimination may result in an underestimate of risk by an unknown amount. The presence of censored data (i.e., data reported as non-detected above a specific reporting limit) in a data set has the potential to affect risk estimates (i.e., censored data introduces uncertainty, because the true concentration is within the interval between the reporting limit and zero). The underestimation would be moderate, because if the non-detected constituent were actually site-related and were present at levels of significant concern, it likely would have been noted at levels above the detection limit at least once.

Analytes that were not detected in the listed media, but where the MRL exceeds the applicable screening level, are indicated in **Appendix D** and include the following:

- Surface water Six metals (beryllium, cadmium, lead, mercury, selenium, silver); three pesticides (4,4'-DDT, toxaphene, chlordane); three individual PAHs (benzo(a)anthracene, benzo(a)pyrene, pyrene).
- Sediment Three metals (antimony, selenium, silver); several pesticides (alpha-BHC, beta-BHC, gamma-BHC, heptachlor, aldrin, chlordane, dieldrin, endosulfan I, endrin, endosulfan II, endosulfan sulfate, heptachlor epoxide, 4,4'-DDE, 4,4'-DDD, methoxychlor, toxaphene); Aroclor-1254; two individual PAHs (naphthalene, 2-methylnaphthalene)

Although the MRL was exceeded for the above analytes, not all RLs were in excess of the screening level. Also, unncertainty regarding individual PAHs and PCBs are negligible, because these chemical classes were evaluated on a total basis, and therefore exceedance of the MRL by individual PAHs or PCBs does not affect evaluation of these classes.

6.3 Uncertainties Associated with Exposure Assessment

6.3.1 Exposure Pathways

The actual presence, Site use, and year-round abundance of the representative receptors included in the SLERA Addendum are uncertain. Exposure pathways selected for quantitative evaluation in this SLERA Addendum do not include all potential exposure pathways for all ecological receptors. Exposure pathways that were not evaluated because they tend to minimally influence the risk outcome include:

- Ingestion of sediments and prey items by benthic invertebrates not easily quantifiable, as rates of ingestion
 by invertebrates are not established. Exposure to invertebrates is addressed based on literature-derived
 toxicity bioassays and resulting sediment benchmarks which includes direct contact and ingestion (where
 applicable for the organism);
- Dermal exposures of wildlife to soil, sediment, and surface water not easily quantifiable; considered to be insignificant due to the protection that wildlife coat/feathers offer, which limits direct dermal contact; and
- Inhalation of dust particles by wildlife considered minor/negligible due to assumption of purely aquatic exposure. Potential exposure via this pathway is negligible.

The surface water ingestion pathway for wildlife is quantifiable (EPA 1993) and was included in the food web evaluation (**Appendix E**). However, the contribution to the overall risk estimate from water ingestion is trivial relative to the ingested dose via incidental ingestion of sediment and diet and contributes little to overall risk. For example, based on maximum surface water concentrations, the dose from ingestion of metals and SVOCs in water contributes less than 1 percent of the combined total dose from other exposure pathways. This negligible contribution from water to overall dose is typical for these chemical classes and leads to a risk estimate unaffected by the water pathway. In addition, many drinking water sources not related to the ponds of the Downstream Area are also available and used by wide-ranging wildlife. Therefore, estimating risk based on an assumed reliance of mobile animals on only one or a few impacted and Site-related locations for water resources is likely to overestimate risk, albeit by a small amount.

6.3.2 Exposure Point Concentrations

The ideal input for exposure calculations is the true mean concentration (or the 95% UCL of the sample average, to be conservative) of a compound within a given medium over the area where exposure may occur. However, in some instances, calculating an estimated mean concentration is not possible due to small datasets. Therefore, the use of the MDC in these instances is a conservative approach and is likely to overestimate exposure to site media, as average concentrations are likely more indicative of actual exposures.

Tissue samples were not collected from ecological receptors in the Downstream Area because of the low potential for adverse impacts to organisms and the uncertainty associated with interpretation of tissue concentrations,

especially for mobile receptors. Modeling the exposure dose to aquatic wildlife is a conservative method for estimating the potential for adverse impacts and in general considered to minimize underestimation of potential risk.

6.3.3 Exposure Analysis

Knowledge about site-specific dietary composition, exposure pathways, and spatial and temporal constraints on exposure for the selected receptors may be incomplete. Moreover, the actual dietary composition of an organism will vary daily and seasonally. The intake (ingestion) rates for food, soil, and sediment used to estimate exposure of wildlife at the Site were derived from literature reports of typical intake rates, body weights, dietary compositions, consumption rates, and metabolic rates in receptors at other locations or from measurements of laboratory-raised organisms. These values are not necessarily representative for site-specific intake rates of receptors.

Use of a single surrogate species to represent several species may introduce uncertainty because of interspecies variability in exposure or sensitivity to a COPEC. Risks to wildlife were assessed for a small subset of the species likely to be present in the Downstream Area. Although wildlife receptors selected represent a range of taxonomic groups and life history types, these species may not represent the full range of exposures and sensitivities present. The species selected may be either more or less exposed or sensitive to constituents than typical species located within the area. However, the species selected for evaluation are considered typical and representative for ecological risk evaluation in this region.

It is unlikely any receptor would be exposed concurrently to the average concentrations of all constituents in each area or in all media. For this analysis, it was assumed that wildlife exposures were continuous and that receptor home ranges were located entirely or at least in part within the boundary of the Downstream Area (i.e., the entire dietary intake was assumed to be from the Upper or Middle Milbrook Ponds). In the case of resident small-home-range receptors (e.g., muskrat), these assumptions are likely to be fairly realistic. However, these assumptions tend to overestimate exposures in receptors that have a large home range, may migrate, and that may not be exposed within the Downstream Area most of the time (e.g., heron, mallard, mink, and raccoon).

The following summarizes uncertainties and their effect on risk conclusions related to specific exposure assumptions used in the SLERA Addendum:

Uptake factors. Literature-derived uptake factors are for a variety of organisms and conditions and typically do not consider that only a finite mass of each chemical is available for the receptors. Lack of data specific to local diets may overestimate exposure and risk.

- Bioaccumulation factors. BAFs are estimates of the potential uptake from media to food items (e.g., sediment to invertebrates). Often, the BAF is derived by determining the geometric mean of values reported in studies. Part of the difficulty and, hence, the uncertainty is the selection and appropriateness of data to include in the BAF calculation. Therefore, the selection of a particular BAF value to model potential uptake to food items may result in under- or over-estimation of risk.
- Home/Foraging Ranges. The foraging ranges applied in the SLERA Addendum were derived based on available literature. In the Step 2 evaluation, the most conservative estimates of the home range were applied. This approach returns an exposure estimate that likely overestimates exposure and ultimately risk for a given receptor. In the Step 3A evaluation, where applicable, an average range was applied to reduce this overestimate. However, given variability in regional and habitat-specific home ranges for a given species and the extent of other attractive habitat nearby, the selected home range may over- or under-estimate potential exposure and risk. Existence of more attractive habitat nearby is likely to result in less Site presence for mobile receptors, with a consequent overestimation of risk.
- Bioavailability. The toxicity of an ingested compound depends on how much is absorbed from the gastrointestinal tract into the body. However, the actual extent of absorption from ingested media (e.g., soil, sediment, and food) is usually not known. The hazard from an ingested dose is estimated by comparing the dose to an ingested dose that is believed to be safe, based on tests in a laboratory setting. Thus, if the absorption is the same in the laboratory test and exposure at the Site, then the prediction of hazard will be

accurate. However, if the absorption of a compound from a given medium is different (usually lower) than occurred in the laboratory study, then the hazard estimate will be incorrect (usually biased high). In this SLERA Addendum, estimates of wildlife exposure assumed a relative bioavailability of 100 percent for all compounds in all media. Assuming bioavailability of 100 percent will overestimate the potential exposure to receptors.

Ecological effects of compounds. Extrapolation between toxicological endpoints (e.g., NOAEL and LOAEL) and/or study duration endpoints (e.g., chronic, subchronic) adds uncertainty that may overestimate or underestimate resulting risk estimates. For example, extrapolation of subchronic duration endpoints (e.g., subchronic LOAEL) to chronic duration endpoints (e.g., chronic NOAEL) for laboratory test species introduces uncertainty into the determination of potential impacts, as the distribution of exposure and effect within these bounds is not known. There is higher confidence in toxicological values derived from studies where the full distribution of exposure and effect are bounded (i.e., chronic NOAEL bounded by a chronic LOAEL) as defined in the study design. Uncertainty also remains with respect to interspecies extrapolation. Laboratory or test species and wildlife species differ with respect to absorption, metabolism, distribution, and excretion of constituents. These variables are addressed by applying additional factors to the chronic or subchronic duration and/or toxicity endpoint to account for uncertainty due to species-to-species extrapolation and other treatment of toxicity data. In the absence of sufficient data to support the use of a species-to-species extrapolation factor, no factor was applied for this evaluation. The use of such modifying uncertainty factors may result in an over- or under-estimation of risk.

6.3.4 Uncertainties Associated with Toxicity Assessment and Risk Characterization

Adverse effects to individuals do not necessarily imply adverse effects at the population or community level. In general, the goal of ERA is to protect communities and populations and not each individual in that population (except in the case of threatened and endangered species). A common endpoint, which unfortunately is very difficult to operationally define, is a population level EC-20 (i.e., the concentration or dose that results in an adverse effect to 20 percent of the population). However, almost all toxicity reference values for dose-based evaluations (e.g., NOAELs and LOAELs) are based on individual-level adverse effects. Risk estimates based on individual risk (as represented by Step 2 HQ and the Step 3A upper bound risk estimates) overstate risk at the population level.

Most toxicity benchmark values are derived from high dosing regimen lab studies of the adverse effects of a single constituent. However, exposures to ecological receptors usually involve multiple constituents, where additive, synergistic, or antagonistic interactions could occur. Data generally are not adequate to permit any quantitative adjustment in toxicity values or risk calculations based on inter-chemical interactions. In accordance with EPA ecological risk guidance, effects from different compounds are not considered additive. This may result in overestimated or underestimated risks if additive or antagonistic effects are actually present for the mixture of COPECs.

In field-collected samples, PAHs typically occur as complex mixtures of co-varying compounds and thus adverse effects result from cumulative effects of multiple PAHs (Schwartz 1999). Application of the total PAH probable (high) sediment screen, per MacDonald et al. (2000), provides a means to account for PAH mixtures and more accurately provides an assessment of actual or expected toxicity.

Assessment endpoints for the receptors in the Downstream Area are based on the sustainability of exposed populations, and adverse effects on individuals in a population may occur even when the population is healthy and stable. However, even if it is possible to accurately characterize the distribution of risks or effects across the members of the exposed population, estimating the impact of those effects on the population generally is difficult and uncertain. The relationship between adverse effects on individuals and effects on the population is complex, depending on the demographic and life history characteristics of the receptor being considered, as well as the nature, magnitude, and frequency of the chemical stresses and associated adverse effects. Thus, the actual risks that will lead to population-level adverse effects will vary from receptor to receptor and risk conclusions based on individual-level toxicity data may under- or overestimate risk.

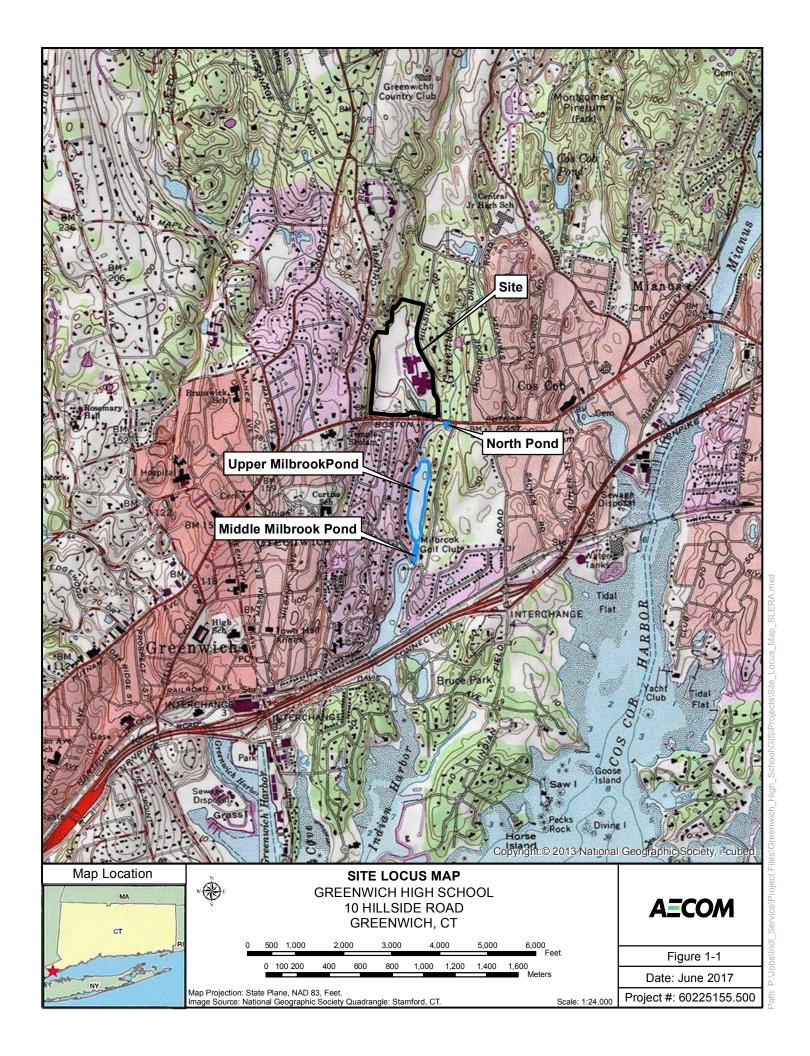
7. Risk Conclusions

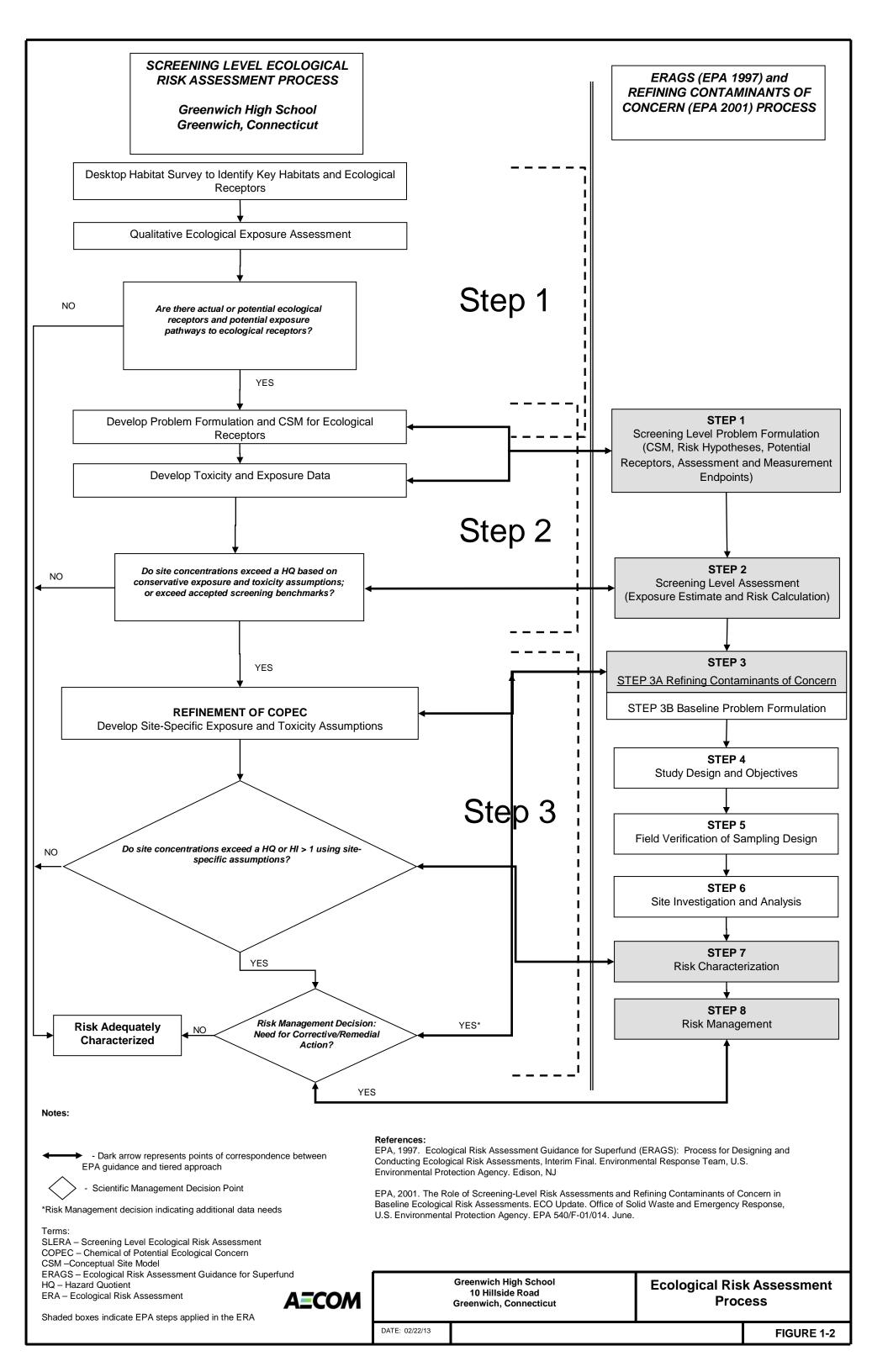
The results of the SLERA Addendum were considered along with associated uncertainties to draw conclusions for all receptors and ecological habitats identified with residual Step 3A risk at the Downstream Area. The exposure area of the Downstream Area is defined as the aquatic habitats of Upper and Middle Milbrook Ponds. These ponds are manmade impoundments on Greenwich Creek and evidence of maintenance of the surrounding shoreline area and the ponds themselves (e.g., mowing, pesticide application signs) were observed during sampling. As such, the aquatic habitats of the ponds are of low to moderate quality. In addition, the presence of the weirs at each outlet may prevent the upstream or downstream movement of aquatic biota such as fish. Therefore, the aquatic-feeding wildlife evaluated in this SLERA Addendum are likely present in the Downstream Area, but their presence is likely limited due to the poor quality of ecological resources available, and it is not likely that the ponds provide sufficient resources for full-time presence of larger wildlife such as mink or great blue heron. As such, the conclusions of this SLERA Addendum have a higher relevance for assumed resident wildlife (e.g., muskrat) and limited mobility sediment invertebrate communities.

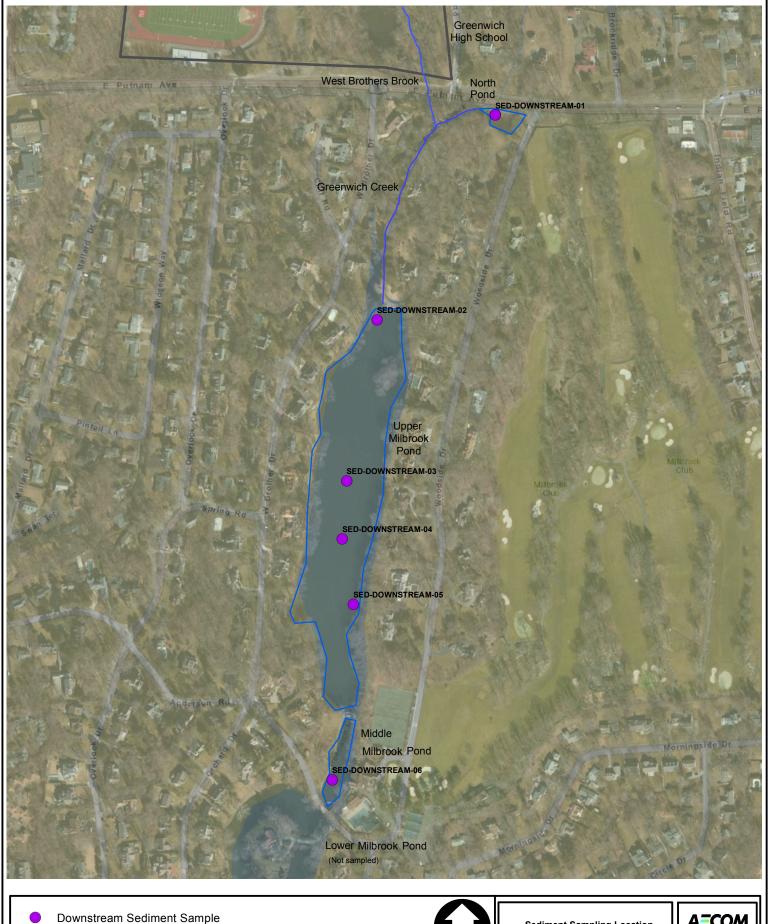
Eight assessment endpoints were evaluated in this SLERA Addendum, which addressed exposures to sediment and surface water of Upper and Middle Milbrook Ponds and food ingestion of prey items from the Upper and Middle Milbrook Ponds. Risk conclusions are summarized below:

Assessment Endpoint	Risk Driver	Comments
Aquatic Life (surface water exposure)	Metals: barium and copper	Although both metals exceed the applicable screening criteria, both metals were detected in the Upstream Area at comparable levels, which suggests potential off-site sources
Sediment Biota (sediment exposure)	nickel, and zinc PAHs: Total HMW PAHs,	Metals were detected at levels below the screening criteria in North Pond and at increasing levels from north to south in Upper and Middle Milbrook Ponds. Similar levels of metals were detected upstream in West Brothers Brook and Cider Mill Pond. These results suggest that levels of metals on Site and in the Downstream Area may be attributable to background sources and may not be toxic to aquatic biota in the ponds. Similar individual PAHs were detected in all three ponds with highest concentrations detected in Upper Milbrook Pond (Sed-Downstream-04) and were predominantly HMW PAHs, which were detected at concentrations an order of magnitude higher than those measured upstream in West Brothers Brook and Cider Mill Pond. These results indicate a potential for adverse effects, but the PAHs are not likely to be attributable to Site activities.
Larval amphibians	None	
Herbivorous Birds (mallard)	None	
Piscivorous Birds (great blue heron)	None	
Herbivorous Mammals (muskrat)	None	
Omnivorous Mammals (raccoon)	None	
Piscivorous Mammals (mink)	None	HMW PAH HQ and total PAH HI exceed 1 (1.3) but this is based on conservative estimate of exposure (maximum detected concentration). The PAHs detected were predominantly HMW PAHs, which were detected at concentrations an order of magnitude higher than those measured upstream in West Brothers Brook and Cider Mill Pond. Thus, any potential for adverse effects due to PAHs are

Assessment Endpoint	Risk Driver	Comments	
		not likely to be attributable to Site activities.	


The conclusions of this SLERA Addendum indicate that the Downstream Area surface water is likely influenced by upstream sources of inorganic and organic compounds based on similar levels of barium and copper measured on Site and in the Upstream Area. For sediment-dwelling biota, there is a potential for impacts due to metals and PAHs. However, because none of these COPECs are identified as ecological risk-drivers for the Site, these constituents may have off-site origins, and their presence in the Downstream Area is not believed to be related to Site activities. Therefore, the SMDP for this SLERA Addendum is the available data indicate either no or low potential for ecological risk in the Downstream Area and no further work is warranted.


8. References


- AECOM. 2012a. Remedial Investigation Report, Greenwich High School, Greenwich, CT.
- Prepared by AECOM for Town of Greenwich, Department of Public Works. October 2012.
- AECOM. 2012b. Human Health Risk Assessment Report, Greenwich High School, Greenwich, CT.
- Prepared by AECOM for Town of Greenwich, Department of Public Works. October 2012.
- AECOM, 2013. Screening Level Ecological Risk Assessment, Greenwich High School, Greenwich, CT. Prepared for: Town of Greenwich Department of Public Works, March 2013.
- Bechtel-Jacobs Company LLC. 1998a. Empirical Models for the Uptake of Inorganic Chemicals by Plants. Bechtel-Jacobs Company LLC, Oak Ridge, Tennessee. BJC/OR-133. Bechtel-Jacobs Company LLC.
- Bechtel-Jacobs Company LLC. 1998b. Biota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel-Jacobs Company LLC, Oak Ridge, Tennessee.
- BJC/OR-112
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables (SQuiRTs). NOAA OR&R Report 08-1. Seattle WA. Office of Response and Restoration Division National Oceanic and Atmospheric Administration, 34 pages.
- CTDEEP. 2011. Connecticut Department of Environmental Protection (CTDEEP) Proposed Revisions to Connecticut Water Quality Standards. January 2011. Available at: http://water.epa.gov/scitech/swguidance/standards/upload/ctwqs.pdf
- Di Toro, D.M. and J.A. McGrath. 2000. "Technical Basis for Narcotic Chemicals and Polycyclic Aromatic Hydrocarbon Criteria. II. Mixtures and Sediments". Environ Toxicol Chem 19 (2000): 1971-1982.
- Di Toro, D.M., McGrath, J.A., and D.J. Hansen. 2000. "Technical Basis for Narcotic Chemicals and Polycyclic Aromatic Hydrocarbon Criteria. I. Water and Tissue". Environ Toxicol Chem 19 (2000): 1951-1970.
- GPS. 2017. GHS Fields Remediation Project. Greenwich Public Schools (GPS) website. Available at: https://www.greenwichschools.org/departments/facilities-rentals/building-grounds-projects/ghs-fields-remediation-project. Accessed on June 26, 2017.
- MacDonald, D.D., C.G Ingersoll, and T.A. Berger. 2000. "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems." Archives of Environmental Contamination and Toxicology. Vol. 39. pp 20-31.
- OEHHA. 2012. Technical Support Document for Exposure Assessment and Stochastic Analysis, FINAL. California Office of Environmental Health Assessment. August, 2012. Internet website: oehha.ca.gov/air/hot_spots/pdf/apenh.pdf.
- Patton, J.F., and M.P. Dieter. 1980. "Effects of Petroleum Hydrocarbons on Hepatic Function in the Duck." Comparative Biochemistry and Physiology C, Vol. 65C(1): 33-36.
- Sample, B. E., D. M. Opresko, and G. W. Suter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. ES/ER/TM-86/R3. Office of Environmental Management, U.S. Department of Energy. Health Sciences Research Division, Oak Ridge National Laboratory Risk Assessment Program, Oak Ridge, TN. June.
- Schwartz, R.C. 1999. "Sediment Quality Guidelines for Polycyclic Aromatic Hydrocarbon Mixtures." Environmental Toxicology and Chemistry, Vol. 18, No. 4, pp. 780-787.

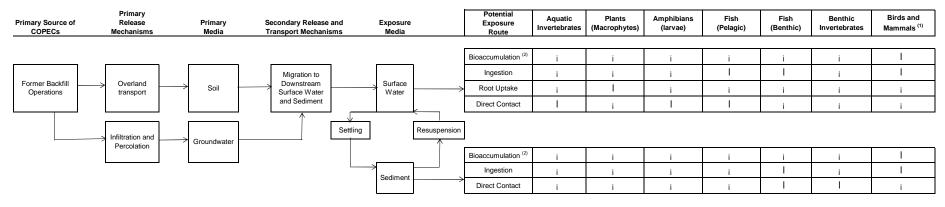
- USEPA. 1993. Wildlife Exposure Factors Handbook. Office of Research and Development, U.S. Environmental Protection Agency (EPA), Washington, D.C. EPA/600/R-93/187a.
- USEPA. 1997. Ecological Risk Assessment Guidance for Superfund, Process for Designing and Conducting Ecological Risk Assessments (Interim Final). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response. EPA 540/R-97/006. June 1997.
- USEPA, 1998. Guidelines for Ecological Risk Assessment. Risk Assessment Forum. U.S. Environmental Protection Agency; Washington, D.C. EPA/630/R-95/002F. April 1998.
- USEPA. 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities (Volume Three). EPA 530-D-99-001A. Washington D.C.: United States Environmental Protection Agency, Office of Solid Waste. August 1999.
- USEPA. 2001. The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments. ECO UPDATE. Interim Bulletin Number 12. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
- USEPA. 2004. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States. National Sediment Quality Survey: Second Edition. Table C-1. Office of Science and Technology, Washington, D.C. EPA-823-R-04-007. November.
- USEPA. 2005. Guidance for Developing Ecological Soil Screening Levels. Office of Emergency and Remedial Response. Washington D.C. November 2003, Revised February 2005. Includes 2007 and 2008 updates.
- USEPA. 2010. National Recommended Water Quality Criteria: 2010. United States Environmental Protection Agency, Office of Water and Office of Science and Technology (4304T).
- USEPA. 2011. Estimations Programs Interface for Windows (EPI Suite) v. 4.1. BCFBAF Interface. Developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC). January 2011. Available online at: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm.
- USEPA. 2012. Biota-Sediment Accumulation Factor Data Set (BSAF). Office of Research and Development with OSWER support. Available online at: http://www.epa.gov/med/prods pubs.htm.

Figures

250

Sediment Sampling Location

Downstream Sediment and Surface Water Report Greenwich, CT


SCALE	DATE	PROJECT NO.
See Insets	12/14	60225155

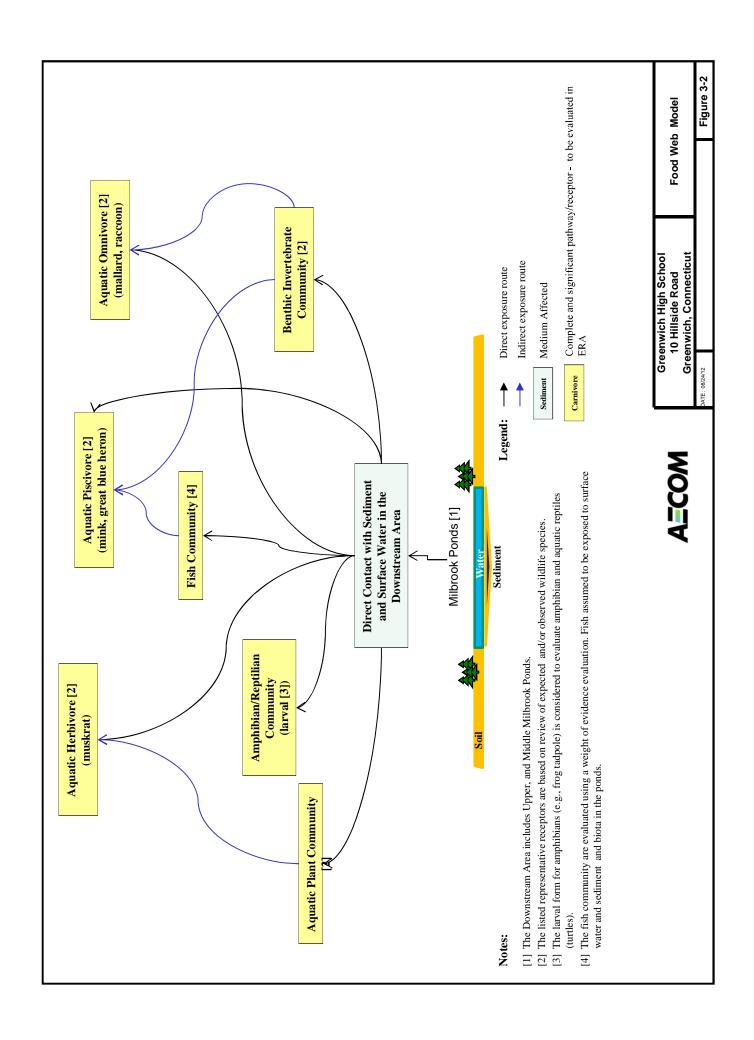
AECOM

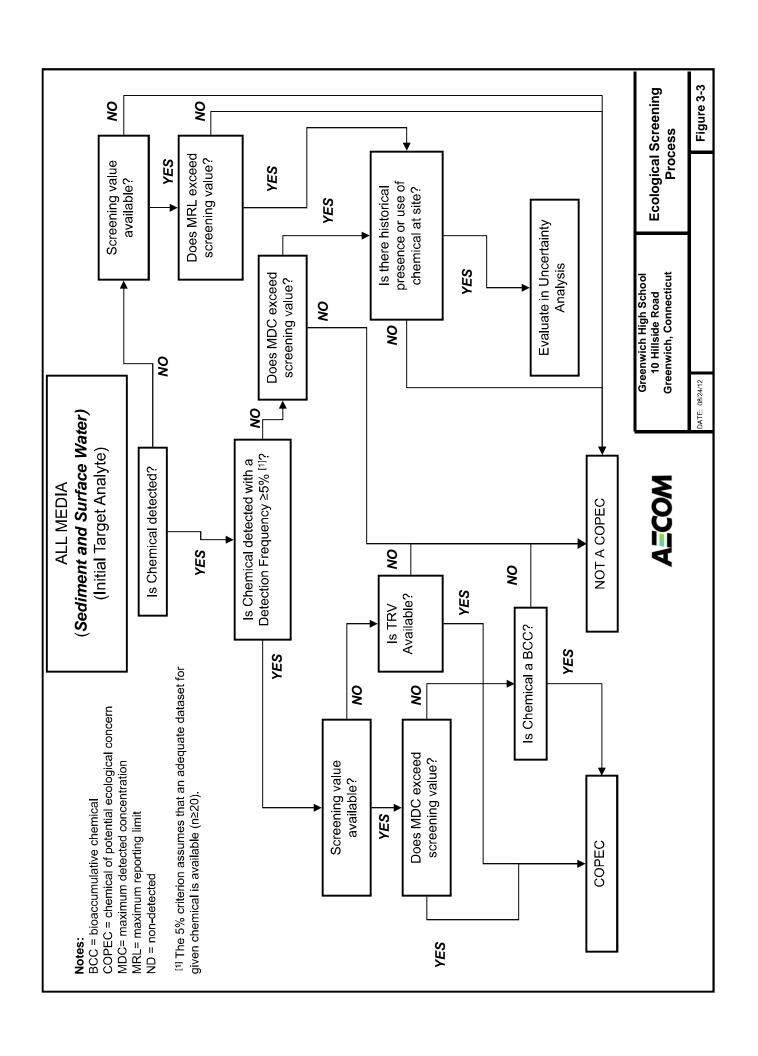
Figure Number

2-1

Figure 3-1 Conceptual Site Model Greenwich High School 10 Hillside Raod Greenwich, CT

Key:


Pathway potentially complete, further evaluation recommended.


Pathway considered and found incomplete or insignificant.

(1) Aquatic and semi-aquatic birds and mammals will be evaluated.

(2) Bioaccumulation considers the ingestion of food items (e.g., plants, invertebrates, fish) impacted by bioaccumulative chemicals.

Invertebrates, plants, and fish will be considered as food items in a food web model to evaluate risks to birds and mammals.

Tables

Table 3-1 Representative Species and Exposure Pathways

Community or Receptor Guild [1]	Key Species Noted or Expected	Exposure Media	Pathway Evaluated? ^[2]	Rationale ^[3]	Representative Species
Aquatic Community	Aquatic zooplankton and macroinvertebrates (isopods, amphipods, cladocera), macrophytes, phytoplankton	Surface water	Pathway Evaluated	Vegetation (emergent, submerged, and phytoplankton) have been observed or may be present in Upper, Middle, and Lower Milbrook Ponds in the Downstream Area. Zooplankton is assumed present, although not specifically observed.	Aquatic Community
Benthic Invertebrate Community	Benthic invertebrates (oligochaetes, insect larvae, mulloscs)	Sediment		A varied benthic community is expected in the substrate of Upper, Middle, and Lower Milbrook Ponds in the Downstream Area.	Benthic Invertebrates
Fish Community	Bass (<i>Micropterus</i> spp.), sunfish (<i>Centrarchidae</i> family), carp (<i>Cyprinus</i> spp.)	Sediment, Biota, Surface Water		A fish community may be present in Upper, Middle, and Lower Milbrook Ponds in the Downstream Area, although fish have not been specifically observed.	Carp, Bass, Sunfish
Aquatic Piscivorous Birds	Great Blue Heron (<i>Ardea herodias</i>), Sediment, B Green Heron (<i>Butorides virescens</i>) Surface Wa			Herons are common to the area and are expected to be present in Upper, Middle, and Lower Milbrook Ponds in the Downstream Area. Other avian piscivores (e.g., kingfisher, green heron) may be expected to occur in the area. The great blue heron was selected as representative of the feeding guild.	Great Blue Heron
Aquatic Omnivorous Birds	Mallard (<i>Anas platyrhyncnos</i>), bluewinged teal (<i>Anas discors</i>) and wood duck (<i>Aix sponsa</i>). Sediment, Bic Surface Wat			Various duck species are expected to occur in the area and are likely to use Upper, Middle, and Lower Milbrook Ponds in the Downstream Area. Mallards, teals, and wood ducks are seasonal or year-round residents common in the area. The mallard is ubiquitous and selected as representative of the feeding guild.	Mallard
Aquatic Piscivorous Mammal	Mink (Neovison vison),	Sediment, Fish, Surface Water		Although not observed, mink are expected to occur in association with Upper, Middle, and Lower Milbrook Ponds in the Downstream Area. The mink is selected as a representative aquatic-feeding mammalian receptor.	Mink
Aquatic Herbivorous Mammals	Muskrat (Ondatra zibethicus)	Sediment, Biota, Surface Water		Muskrat are common to the area and are likely to occur in association with Upper, Middle, and Lower Milbrook Ponds in the Downstream Area. Muskrats were selected to represent the feeding guild.	Muskrat
Aquatic Omnivorous Mammals	Raccoon (<i>Procyon lotor</i>)	Sediment, Biota, Surface Water	Pathway Evaluated	Raccoons are ubiquitous inhabitants of a variety of habitats including but not limited to forest, marsh, riparian and disturbed/urban habits and are common to the area. The raccoon was selected to represent aquatic omnivorous mammals as this species is known to obtain resources from both terrestrial and aquatic habitats and ample life history data are available. The evaluation assumes that the raccoon obtains all food resources from aquatic sources.	Raccoon

Notes:

^[1] Receptor guilds (or ecological guilds) are any group of species that exploit the same dietary resources. Guilds are limited to those identified by site observations or via desktop site survey.

 $^{^{\}left[2\right]}\text{Refers to whether a }$ given pathway is proposed for evaluation in the ERA.

^[3] The SLERA is focused on aquatic resources associated with Upper, Middle, and Lower Milbrook Ponds in the Downstream Area. Three primary aquatic habitat types are associated with the West Brothers Brook: stream, pond and marsh, all of which supports aquatic and benthic communities, including fish.

Table 3-2 Sample Summary Table - SLERA Addendum

AOC	Location Name	Sample Date	Depth Inter	Depth Interval (ft)		Notes [2]
Downstream	SED-DOWNSTREAM-02	1-Oct-2014	0	0.5	SE	Located in Upper Milbrook Pond.
Downstream	SED-DOWNSTREAM-03	1-Oct-2014	0	0.5	SE	Located in Upper Milbrook Pond.
Downstream	SED-DOWNSTREAM-04	1-Oct-2014	0	0.5	SE	Located in Upper Milbrook Pond.
Downstream	SED-DOWNSTREAM-05	1-Oct-2014	0	0.5	SE	Located in the southeastern section of Upper Milbrook Pond.
Downstream	SED-DOWNSTREAM-06	2-Oct-2014	0	0.5	SE	Located in Middle Milbrook Pond.
Downstream	SW-DOWNSTREAM-02	1-Oct-2014			WS	Located in Upper Milbrook Pond.
Downstream	SW-DOWNSTREAM-03	1-Oct-2014			WS	Located in Upper Milbrook Pond.
Downstream	SW-DOWNSTREAM-04	1-Oct-2014			WS	Located in Upper Milbrook Pond.
Downstream	SW-DOWNSTREAM-05	1-Oct-2014			ws	Located in the southeastern section of Upper Milbrook Pond.
Downstream	SW-DOWNSTREAM-06	2-Oct-2014			WS	Located in Middle Milbrook Pond.
Background	SED-DOWNSTREAM-01	2-Oct-2014	0	0.5	SE	Located in the North Pond (Upstream)
Background	SED-BBUS-1	25-Jul-2013	0	0.5	SE	Located in Greenwich Creek upstream of Site
Background	SED-BBUS-2	25-Jul-2013	0	0.5	SE	Located in Greenwich Creek upstream of Site
Background	SED-BBUS-3	25-Jul-2013	0	0.5	SE	Located in Greenwich Creek upstream of Site
Background	SED-BBUS-4	25-Jul-2013	0	0.5	SE	Located in Greenwich Creek upstream of Site
Background	SW-DOWNSTREAM-01	2-Oct-2014			WS	Located in the North Pond (Upstream)
Background	SW-BBUS-1	25-Jul-2013			WS	Located in Greenwich Creek upstream of Site
Background	SW-BBUS-2	25-Jul-2013			WS	Located in Greenwich Creek upstream of Site
Background	SW-BBUS-3	25-Jul-2013			WS	Located in Greenwich Creek upstream of Site
Background	SW-BBUS-4	25-Jul-2013			WS	Located in Greenwich Creek upstream of Site

Notes:

AOC = area of concern

SE = sediment

WS = surface water

-- = Not Appicable.

 $^{^{\}left[2\right]}$ The sediment samples were collected from the upper 6 inches after removing surficial debris.

^[1] The dataset includes co-located sediment and surface water samples collected downstream of the site.

Table 3-3 Screening Levels and Benchmarks

					Surface Water			Sediment		
					Aquatic Life Screening Level		Amphibian Screening Level		Sediment Threshold Screening Level	
Analyte	CAS Number		Subclass	BCC	(ug/L)	Source	(ug/L)	Source	(mg/kg)	Source
Antimony	7440-36-0	Inorganic			30	NAWQC	300	Schuytema et al. 1996	0.16	Buchman 2008, bkg
Arsenic	7440-38-2	Inorganic			150	CDEP 2011, CWQS	2900	Sparling et al., 2000	9.79	Buchman 2008, TEC
Barium	7440-39-3	Inorganic			3.9	EPA 1996, ET	200	0	0.7	Buchman 2008, bkg
Beryllium	7440-41-7	Inorganic			0.66	Suter and Tsao, 1996 Tier II SCV	690	Sparling et al., 2000	0.00	December of 0000 TEO
Cadmium	7440-43-9 7440-47-3	Inorganic			0.125 11	CDEP 2011, CWQS* CDEP 2011, CWQS	180 560	Sparling et al., 2000	0.99 43.4	Buchman 2008, TEC Buchman 2008, TEC
Chromium	7440-47-3	Inorganic Inorganic			4.8	CDEP 2011, CWQS*	15	Sparling et al., 2000 Sparling et al., 2000		Buchman 2008, TEC
Copper Cyanide	57-12-5	Inorganic			5.2	CDEP 2011, CWQS	10	Spanning et al., 2000		BTAG RIII 2006, SLV
Lead	7439-92-1	Inorganic			1.2	CDEP 2011, CWQS*	310	Sparling et al., 2000		Buchman 2008, TEC
Mercury	7439-97-6	Inorganic		Х	0.77	CDEP 2011, CWQS	30	Sparling et al., 2000	0.18	Buchman 2008, TEC
Nickel	7440-02-0	Inorganic			28.9	CDEP 2011, CWQS*	9600	Sparling et al., 2000		Buchman 2008, TEC
Selenium	7782-49-2	Inorganic			5	CDEP 2011, CWQS	680	Sparling et al., 2000		BTAG RIII 2006, SLV
Silver	7440-22-4	Inorganic			0.36	Suter and Tsao, 1996 Tier II SCV	2.6	Sparling et al., 2000	1	BTAG RIII 2006, SLV
Thallium	7440-28-0	Inorganic			12	Suter and Tsao, 1996 Tier II SCV	72	Sparling et al., 2000		, -
Vanadium	7440-62-2	Inorganic			19	EPA 1996, ET			50	Buchman 2008, bkg
Zinc	7440-66-6	Inorganic			65	CDEP 2011, CWQS*	72	Sparling et al., 2000	121	Buchman 2008, TEC
1-Methylnaphthalene	90-12-0	PAH	LPAH		2.1	Buchman 2008, CCC				
2-Methylnaphthalene	91-57-6	PAH	LPAH		4.7	BTAG RIII 2006, SLV				BTAG RIII 2006, SLV
Acenaphthene	83-32-9	PAH	LPAH		23	EPA 1996, ET				BTAG RIII 2006, SLV
Acenaphthylene	208-96-8	PAH	LPAH							BTAG RIII 2006, SLV
Anthracene	120-12-7	PAH	LPAH		0.73	EPA 1996, ET	25	Schuytema et al. 1996		Buchman 2008, TEC
Benzo(a)anthracene	56-55-3	PAH	HPAH	Х	0.027	Suter and Tsao, 1996 Tier II SCV				Buchman 2008, TEC
Benzo(a)pyrene	50-32-8	PAH	HPAH	Х	0.014	Suter and Tsao, 1996 Tier II SCV	12.5	Schuytema et al. 1996		Buchman 2008, TEC
Benzo(b)fluoranthene	205-99-2	PAH	HPAH	Х	9.1	EPA 2003, R5 ESL				EPA 2003, R5 ESL
Benzo(g,h,i)perylene	191-24-2	PAH	HPAH	Х						BTAG RIII 2006, SLV
Benzo(k)fluoranthene	207-08-9	PAH PAH	HPAH HPAH	X					0.0272 0.166	Buchman 2008, TEL-H Buchman 2008, TEC
Chrysene Dibenzo(a,h)anthracene	218-01-9 53-70-3	PAH	HPAH	X						Buchman 2008, TEC
Fluoranthene	206-44-0	PAH	LPAH	Х	8.1	EPA 1996, ET	90	Schuytema et al. 1996		Buchman 2008, TEC
Fluorene	86-73-7	PAH	LPAH		3.9	EPA 1996, ET	90	Schuylenia et al. 1990	0.423	Buchman 2008, TEC
Indeno(1,2,3-cd)pyrene	193-39-5	PAH	HPAH	Х	4.3	EPA 2003, R5 ESL				Buchman 2008, TEL-H
Naphthalene	91-20-3	PAH	LPAH		24	EPA 1996, ET	2100	Schuytema et al. 1996		Buchman 2008, TEC
Phenanthrene	85-01-8	PAH	LPAH		6.3	EPA 1996, ET	2100	Condytoma of all 1000		Buchman 2008, TEC
Pyrene	129-00-0	PAH	HPAH	Х	0.025	BTAG RIII 2006, SLV	140	Schuytema et al. 1996		Buchman 2008, TEC
	RACALC-HPAH	PAH	HPAH	Х	0.000					Buchman 2008, TEL-H
	RACALC-LPAH	PAH	LPAH						0.07642	Buchman 2008, TEL-H
Total PAHs	RACALC-PAH	PAH		Х					1.6	Buchman 2008, TEC
Aroclor 1016	12674-11-2	PCB		Х			6.2	Sparling et al., 2000		
Aroclor 1221	11104-28-2	PCB		Х						
Aroclor 1232	11141-16-5	PCB		Х						
Aroclor 1242	53469-21-9	PCB		Х			2.1	Sparling et al., 2000		
Aroclor 1248	12672-29-6	PCB		Х						
Aroclor 1254	11097-69-1	PCB		Х			1	Sparling et al., 2000	0.06	Buchman 2008, TEL
Aroclor 1260	11096-82-5	PCB		Х						
Aroclor 1262	37324-23-5	PCB		Х						
Aroclor 1268	11100-14-4	PCB		X	0.044	ODED COAL OWOO			0.0500	December of 0000 TEO
Total PCB Aroclors	RACALC-PCB	PCB	Horbioida	Х	0.014	CDEP 2011, CWQS			0.0598	Buchman 2008, TEC
2,2-Dichloropropionic acid	75-99-0		Herbicide Herbicide		26	Buchman 2008, CCC			12.3	BTAG RIII 2006, SLV
2,4,5-T	93-76-5				36 30	BTAG RIII 2006, SLV			0.675	BTAG RIII 2006, SLV
2,4,5-TP (Silvex) 2,4-DB	93-72-1 94-82-6		Herbicide Herbicide		30	DIAG KIII 2000, SLV			0.075	DIAG KIII 2000, SLV
2-4 Dichlorophenoxyacetic acid (2,4			Herbicide		4	Buchman 2008, CCC			1.273	EPA 2003. R5 ESL
4.4-DDD (p.p)	72-54-8		Insecticide	Х	0.011	Suter and Tsao, 1996 Tier II SCV	,			Buchman 2008, TEC
4,4-DDE (p,p)	72-54-6		Insecticide	X	105	Buchman 2008, CCC				Buchman 2008, TEC
4,4-DDE (p,p)	50-29-3		Insecticide		0.0005	Buchman 2008, CCC	150	Sparling et al., 2000		Buchman 2008, TEC
T,T DD1 (P,P)	00-20-0	i colloide	mocolicide	^	0.0000	2000, 000	100	Jopanning of al., 2000	0.00+10	5401111411 2000, TEO

						Surface	Water		Sec	liment
					Aquatic Life		Amphibian		Sediment Threshold	
					Screening Level		Screening Level		Screening Level	
Analyte	CAS Number	Class	Subclass	BCC	(ug/L)	Source	(ug/L)	Source	(mg/kg)	Source
Alachlor	15972-60-8	Pesticide	Herbicide							
Aldrin	309-00-2	Pesticide	Insecticide	Х	3	BTAG RIII 2006, SLV	150	Sparling et al., 2000	0.002	BTAG RIII 2006, SLV
alpha-Chlordane	5103-71-9	Pesticide	Insecticide	Х	0.0022	Buchman 2008, CCC	500	Schuytema et al. 1996		
Camphechlor	8001-35-2	Pesticide	Insecticide	Х	0.0002	Buchman 2008, CCC	34	Schuytema et al. 1996	0.028	EPA 1996, ET
Chlordane	57-74-9	Pesticide	Insecticide	Х	0.0043	CDEP 2011, CWQS			0.00324	Buchman 2008, TEC
delta-BHC	319-86-8	Pesticide	Insecticide	Х	141	BTAG RIII 2006, SLV			6.4	BTAG RIII 2006, SLV
Dicamba	1918-00-9	Pesticide	Herbicide		10	Buchman 2008, CCC				
Dichloroprop	120-36-5	Pesticide	Herbicide							
Dieldrin	60-57-1	Pesticide	Insecticide	Х	0.056	CDEP 2011, CWQS	100	Sparling et al., 2000	0.0019	Buchman 2008, TEC
Dinitrobutyl phenol	88-85-7	Pesticide	Herbicide		0.05	Buchman 2008, CCC			0.0145	EPA 2003, R5 ESL
Endosulfan I	959-98-8	Pesticide	Insecticide		0.056	CDEP 2011, CWQS	1.8	Schuytema et al. 1996	0.0029	EPA 1996, ET
Endosulfan II	33213-65-9	Pesticide	Insecticide		0.056	CDEP 2011, CWQS	1.8	Schuytema et al. 1996	0.014	EPA 1996, ET
Endosulfan sulfate	1031-07-8	Pesticide	Insecticide		2.22	Buchman 2008, CCC			0.0054	BTAG RIII 2006, SLV
Endrin	72-20-8	Pesticide	Insecticide		0.036	CDEP 2011, CWQS	10	Sparling et al., 2000	0.00222	Buchman 2008, TEC
Endrin aldehyde	7421-93-4	Pesticide	Insecticide							
Endrin ketone	53494-70-5	Pesticide	Insecticide							
gamma-Chlordane	5103-74-2	Pesticide	Insecticide	Х						
Heptachlor	76-44-8	Pesticide	Insecticide		0.0038	CDEP 2011, CWQS	435	Schuytema et al. 1996	0.068	BTAG RIII 2006, SLV
Heptachlor epoxide	1024-57-3	Pesticide	Insecticide		0.0038	CDEP 2011, CWQS			0.00247	Buchman 2008, TEC
Hexachlorocyclohexane, alpha	319-84-6	Pesticide	Insecticide	Х	2.2	Buchman 2008, CCC			0.006	BTAG RIII 2006, SLV
Hexachlorocyclohexane, beta	319-85-7	Pesticide	Insecticide	Х	2.2	Buchman 2008, CCC			0.005	BTAG RIII 2006, SLV
Hexachlorocyclohexane, gamma (L	i 58-89-9	Pesticide	Insecticide	Х	0.08	Buchman 2008, CCC	2700	Sparling et al., 2000	0.00237	Buchman 2008, TEC
MCPA (2-Methyl-4-Chlorophenoxya	94-74-6	Pesticide	Herbicide		2.6	Buchman 2008, CCC				
MCPB	94-81-5	Pesticide	Herbicide							
MCPP	93-65-2	Pesticide	Herbicide							
Methoxychlor	72-43-5	Pesticide	Insecticide		0.03	Buchman 2008, CCC	80	Schuytema et al. 1996	0.019	EPA 1996, ET
Total DDx	RACALC-DDx	Pesticide	Insecticide	Х	0.001	CDEP 2011, CWQS	150	Sparling et al., 2000	0.00528	Buchman 2008, TEC

Notes:

μg/L = micrograms per liter

mg/kg = milligrams per kilogram

NA = not available

* - indicates that given metal is hardness dependent. Data are screened with default hardness; subsequent analysis of surface incorporates site-specific hardness.

BCC = bioaccumulative compound; BCCs (except for PAHs) include any chemical that has the potential to cause adverse effects after release to surface waters due to bioaccumulation in aquatic organisms (the bioaccumulation factor must be greater than 1000, after considering metabolism ar PAHs are as benzo(a)pyrene is included as a priority persistent bioaccumulative and toxic chemical per EPA 2012 (http://www.epa.gov/pbt/index.htm).

References:

Surface Water

- 1. CT DEEP 2011. Numerical Water Quality Crieteria for Chemical Constituents. State of Connecticut Department of Environmental Protection. Bureau of Water Protection and Land Reuse Planning and Standards Division, 2011 Connecticut Water Quality Standards (CWQS). Continuous (4-da
- 2. Buchman, M.F, 2008. NOAA Screening Quick Reference (SQuiRT) Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages. Continuous chronic criteria (CCC) for fresh waters (National Ambie
- 3. Suter and Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota, 1996 Revision Tier II Secondary Chronic Values (Tier II SCV)
- 4. EPA 1996. Ecotox Thresholds (ET). United States Environmental Protection Agency. Office of Solid Waste and Emergency Response. Intermittent Bulletin, Vol 3(2). EPA540/F-95/038. January. Table 2 (Tier II values)
 5. EPA 2006. Screening Level Values (SLVs) for Freshwater and Marine Sediment and Freshwater and Marine Water to be Used at Superfund Sites. Region III Biological Technical Assistance Group (BTAG). July/August 2006.
- 6. EPA 2003. RCRA Corrective Action Ecological Screening Levels (ESLs). EPA, Region 5. August 22, 2003. (Water ESL)
- 7. Schuytema et al. 1996. "Amphibian Toxicity Data for Water Quality Criteria Chemicals". EPA/600/R-96/124. Corvallis, Oregon
- 8. Sparling et al., 2000. Ecotoxicology of Amphibians and Reptiles. SETAC Press.

Sedimer

- 1. Buchman, M.F. 2008. NOAA Screening Quick Reference (SQuiRT) Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.
- Sediment hierarchy of selection (in order of preference): A. Threshold Effect Concentration (TEC); B. Threshold Effect Level (TEL); C. ARCS Threshold Effect Level (Hyalella azteca) (TEL-H)
- 2. EPA 1996. Ecotox Thresholds. United States Environmental Protection Agency. Office of Solid Waste and Emergency Response. Intermittent Bulletin, Vol 3(2). EPA540/F-95/038. January. Table 2 (SQB)
- 3. EPA 2006. Screening Level Values (SLV) for Freshwater and Marine Sediment and Freshwater and Marine Water to be Used at Superfund Sites. Region III Biological Technical Assistance Group (BTAG). July/August 2006.
- 4. EPA 2003. RCRA Corrective Action Ecological Screening Levels (ESLs). U.S EPA, Region 5. August 22, 2003. (Sediment ESL) In the absence of toxicity-based values from the above sources, the sediment "background" value (bkg) presented in Bucman 2008 was applied.

Other

EPA 1995. Final Water Quality Guidance for the Great Lakes System. 60 Federal Register: 15365 (March 23, 1995). Table 6.

Table 4-1 Ecological Risk Assessment Assumptions^[1]

Greenwich High School 10 Hillside Road Greewnich, CT

Parameter	Step 2 Screening Level Assessment	Step 3A Refinement of COPEC			
Exposure					
Area Use Factors	100%	Species-specific, per site observations and estimates for future land use, as appropriate.			
Bioavailability	100%	Assumed 100% in the absence of quantitative data. Specific site and COPEC bioavailability data is discussed qualitatively as applicable.			
Life History	Per Receptor Exposure Parameters	Per Receptor Exposure Parameters			
Dietary Composition	100% of diet consists of most dominant food item [2]	Species-specific typical dietary composition, as listed in Receptor Exposure Parameters			
Dietary Uptake factors (BAFs)	Literature data, per Receptor Exposure Parameters. The 90th percentile (upper bound) value is used where available.	Literature data, the central tendency value is used.			
Exposure Point Concentrations					
Media Concentration	Maximum Detected Concentration for exposure area.	Maximum Detected Concentration for exposure area.			
Toxicity Values					
Toxicity Reference Value (TRV)	Chronic NOAEL	Chronic NOAEL ^[3] and Chronic LOAEL (surrogate for EC20 population level effec			

Notes

COPEC = chemical of potential ecological concern

EC20 = 20% effect concentration

LOAEL = lowest observable adverse effect level

NOAEL = no observable adverse effect level

BAF = bioaccumulation factor

References:

EPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Environmental Response Team, U.S. Environmental Protection Agency. Edison, NJ. EPA. 2001. The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments. ECO Update. Office of Solid Waste and Emergency Response,

^[1] Assumptions presented are based on EPA guidance (EPA 2001; EPA 1997)

 $^{^{\}rm [2]}$ Most dominant food item: the "preferred" diet item assumed to supply 100% of diet

^[3] Step 3 (refinement of COPECs) provides a risk estimate bounded by toxicity study duration endpoints, providing an upper bound (NOAEL-based) and lower bound (LOAEL-based) risk estimate.

				l/Sediment-to-F ue dwt)/(mg/kg			t-to-Benthic Inv			-	/ater-to-Fish sue wwt)/(mg/L water)			liment-to-Fish sue dwt)/(mg/L water)
COPEC	CAS	Class	BAFplant ^[1]	90th Percentile [1] BAFplant	Comment/ Reference	BAFinv ^[1] /BSAF	90th Percentile ^[1] BAFinv			BAF fish (max)	Comment/ Reference	BSAF fish	90th Percentile BAFfish	Comment/ Reference
Volatile Organic Compounds (8260B)					•									
2-Butanone	78-93-3	VOC	26.3	NA	Travis and Arms (1988)	1.0	NA	Default	1.0	1.0	BCFwin, EPA (2011)	1	NA	Default (EPA 2004)
Acetone	67-64-1	VOC	53.3	NA	Travis and Arms (1988)	1.0	NA	Default	1.0	1.0	BCFwin, EPA (2011)	1	NA	Default (EPA 2004)
PAHs (8270C)				-										
Total High Molecular Weight PAHs	RACALC-HPAH	PAH	In(Cp)=0.975*Ln(Cs)-2.0615	NA	BaP used as surrogate, EPA (2005)	0.14	0.18	Mean/90th percentile of hPAH BSAFs	3106	5846	Mean/Maximum of hPAH BAFs per BCFwin, EPA (2011)	0.26	NA	Mean of hPAH BSAFs per EPA (2012) [5]
Total Low Molecular Weight PAHs	RACALC-LPAH	PAH	In(Cp)=0.7784*Ln(Cs)-0.9887	NA	Anthracene used as surrogate, EPA (2005)	0.14	0.18	Mean/90th percentile of IPAH BSAFs	614	691	Mean/Maximum of IPAH BAFs per BCFwin, EPA (2011)	2.8	NA	Mean of IPAH BSAFs per EPA (2012) [5]
Total PAHs [3]	RACALC-PAH	PAH	In(Cp)=0.7912*Ln(Cs)-1.1442	NA	EPA (2005)	0.14	0.18	Mean/90th percentile of PAH BSAFs	1860	3268	Mean/Maximum of PAH BAFs per BCFwin, EPA (2011)	1.5	NA	Mean of PAH BSAFs per EPA (2012) [5]
Metals and Cyanide (6010B/6020,	etals and Cyanide (6010B/6020, 7470A/7471A, 9010/9012A)													
Arsenic	7440-38-2	Metal	0.038	1.103	Bechtel-Jacobs (1998a)	0.14	0.69	Bechtel-Jacobs (1998b)	17	NA	OEHHA (2012)	NA	NA	[6]
Barium	7440-39-3	Metal	0.156	0.477	Bechtel-Jacobs (1998a)	0.091	0.16	Bechtel-Jacobs (1998b)	5.2	NA	WDOE (1996)	NA	NA	[6]
Beryllium	7440-41-7	Metal	In(Cp)=0.7345*Ln(Cs)-0.5361	NA	Bechtel-Jacobs (1998a)	0.77	3.72	Bechtel-Jacobs (1998b)	40	NA	OEHHA (2012)	NA	NA	[6]
Cadmium	7440-43-9	Metal	In(Cp)=0.546*Ln(Cs)-0.475	NA	Bechtel-Jacobs (1998a)	0.60	7.99	Bechtel-Jacobs (1998b)	40	NA	OEHHA (2012)	NA	NA	[6]
Chromium	7440-47-3	Metal	0.041	0.083	Bechtel-Jacobs (1998a)	0.10	0.47	Bechtel-Jacobs (1998b)	21	NA	OEHHA (2012)	NA	NA	[6]
Copper	7440-50-8	Metal	In(Cp)=0.394*Ln(Cs)+0.668	NA	Bechtel-Jacobs (1998a)	1.57	5.25	Bechtel-Jacobs (1998b)	36	NA	NRWQC (HH), EPA (2002)	NA	NA	[6]
Lead	7439-92-1	Metal	In(Cp)=0.561*Ln(Cs)-1.328	NA	Bechtel-Jacobs (1998a)	0.071	0.61	Bechtel-Jacobs (1998b)	12	NA	OEHHA (2012)	NA	NA	[6]
Nickel	7440-02-0	Metal	In(Cp)=0.784*Ln(Cs)-2.223	NA	Bechtel-Jacobs (1998a)	0.49	2.32	Bechtel-Jacobs (1998b)	21	NA	OEHHA (2012)	NA	NA	[6]
Vanadium	7440-62-2	Metal	0.00485	0.010	Bechtel-Jacobs (1998a)	0.042	0.088	Soil invertebrate value used as surrogate	1	NA	Default	NA	NA	[6]
Zinc	7440-66-6	Metal	In(Cp)=0.554*Ln(Cs)+1.575	NA	Bechtel-Jacobs (1998a)	1.94	7.53	Bechtel-Jacobs (1998b)	47	NA	NRWQC (HH), EPA (2002)	NA	NA	[6]
Mercury (7470A)	7439-97-6	Metal	In(Cp)=0.544*Ln(Cs)-0.996	NA	Bechtel-Jacobs (1998a)	1.13	2.87	Bechtel-Jacobs (1998b)	84	NA	OEHHA (2012)	NA	NA	[6]
Pesticides (8081)														
Total DDx	RACALC-DDx	Pest	In(Cp)=0.7524*Ln(Cs)-2.5119	NA	EPA (2005)	ln(Cp)=0.8561*Ln(Cs)+2.1287	NA	EPA (2005)	1,594,333	2,315,000	BCFwin (DDT), EPA (2011)	24.7	NA	Mean of 4,4-DDT, -DDE and DDD BSAFs per EPA (2012) [5]
Chlordane	57-74-9	Pest	0.18	NA	EPA (2005) [2]	4.1	NA	Mean of alpha- and gamma- chlordane BSAFs per EPA (2012) [5]	1,737,067	3,205,000	BCFwin, EPA (2011)	4.9	NA	Mean of alpha- and gamma- chlordane BSAFs per EPA (2012) [5]
Polychlorinated biphenyls (8082)														
Total PCBs	RECALC-PCBs	РСВ	0.17	NA	EPA (2005)	10.7	NA	Aroclor 1260 surrogate, EPA (2012) [4]	1,249,467	2,100,000	BCFwin, EPA (2011)	112.8	NA	Aroclor 1260 surrogate, EPA (2012) [5]

Notes:

- [1] The central tendency value is represented by the median, unless otherwise noted. The median value is used for the refined screening level evaluation, (RSLERA) and 90th percentile values, where available, are used for screening level evaluations (RSLERA).
- [2] Estimated plant uptake values (constants) were computed using the following relationship for analytes having a log Kow between 3 and 8: Log BAF soil to plant = 1.781 0.4057 * log Kow, per EPA (2005). For those analytes, with Log Kows outside of this range the relationship presented by Travis and Arms (1988) was used: Log BAF soil to plant = 1.588-0.578 * Log Kow
- [3] The total PAH value is the mean of the data presented for the 16 priority PAHs (also includes 1- and 2-methylnaphthalene)
- [4] The fish BSAF is modified from the reported value that is given in organic carbon-lipid normalized units (kg-sediment-oc / kg-lipid-fish). The BSAF is modified using the following relationship: modified BSAF (kg-sediment / kg-fish tissue wwt) = BSAF (kg-sediment-oc / kg-lipid-fish) x Fish lipid content (unitless) / Sediment OC (unitless),
- where lipid content is conservatively assumed to be 7 percent and organic carbon assumed a total organic carbon of 1 percent (foc=0.01). The value is further modified to be presented in dry weight units assuming 75 percent moisture (i.e., modified BSAF / 0.25).
- The invertebrate BSAF is modified from the reported value that is given in organic carbon-lipid normalized units (kg-sediment-oc / kg-lipid-invertebrate). The BSAF is modified using the following relationship: modified BSAF (kg-sediment-oc / kg-lipid-invertebrate) x Invertebrate lipid content (unitless) / Sediment OC (unitless),
- where lipid content is conservatively assumed to be 1.3% (freshwater molluscs and worms per USCOE 2009) and a total organic carbon of 1 percent (foc=0.01). The value is further modified to be presented in dry weight units assuming 80 percent moisture (i.e., modified BSAF / 0.2). [6] Use of BSAFs for inorganics is not appropriate; therefore, inorganics were not evaluated (ODEQ 2007; USCOE 2009)

NA = Value not available

dwt = dry weight basis

wwt = wet weight basis

NRAWQC = national recommended ambient water quality criteria

References:

Bechtel-Jacobs Company LLC. 1998a. Empirical Models for the Uptake of Inorganic Chemicals by Plants. Bechtel-Jacobs Company LLC, Oak Ridge, Tennessee. BJC/OR-133. Bechtel-Jacobs Company LLC.

Bechtel-Jacobs Company LLC. 1998b. Biota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel-Jacobs Company LLC, Oak Ridge, Tennessee. BJC/OR-112

Travis, C.C. and Arms, A.D., 1988. "Bioconcentration of Organics in Beef, Milk and Vegetation," Environmental Science and Technology, 22:271-274.

EPA. 2002. National Recommended Water Quality Criteria: 2002 Human Health Criteria Calculation Matrix. United States Environmental Protection Agency, Office of Water (4304T), EPA-822-R-02-012, November 2002.

EPA. 2004. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, National Sediment Quality Survey: Second Edition. Office of Science and Technology, Washington, D.C. EPA-823-R-04-007. November. Table C-1.

EPA 2005. Ecological Soil Screening Level Guidance. Washington D.C.: Office of Emergency and Remedial Response. November 2003, Revised February 2005.

EPA. 2011. Estimations Programs Interface for Windows (EPI Suite) v. 4.1. BCFBAF Interface. Developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC). January 2011. Available online at: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

EPA. 2012. Biota-Sediment Accumulation Factor Data Set (BSAF). Office of Research and Development with OSWER support. Available online at: http://www.epa.gov/med/prods_pubs.htm. Accessed September 7, 2012.

WDOE. 1996. Washington State Department of Ecology, Toxics Cleanup Program.

OEHHA. 2012. Technical Support Document for Exposure Assessment and Stochastic Analysis, FINAL. California Office of Environmental Health Assessment. August, 2012. Available at: oehha.ca.gov/air/hot_spots/pdf/apenh.pdf

ODEQ. 2007. Guidance for Assessing Bioaccumulative Chemicals of Concern in Sediment, April 19, 2007 Public Workshop. Oregon Department of Environmental Quality. Available online at: http://www.deq.state.or.us/lq/pubs/Bioaccumtraining07041

USCOE. 2009. BSAF Database. U.S. Army Corps of Engineers. Technical Point of Contact, Mr. Charlie Lutz. Accessed online January 21, 2009 at: http://el.erdc.usace.army.mil/bsaf/bsaf.html

Table 4-3 Exposure Point Concentrations for Surface Water and Sediment

			Sediment (mg/kg) [1,2]
COPEC	CAS	Class	Maximum Detected Concentration
Arsenic	7440-38-2	Inorganic	14.2
Barium	7440-39-3	Inorganic	823
Cadmium	7440-43-9	Inorganic	2.83
Chromium	7440-47-3	Inorganic	95.5
Copper	7440-50-8	Inorganic	416
Lead	7439-92-1	Inorganic	305
Mercury	7439-97-6	Inorganic	0.577
Nickel	7440-02-0	Inorganic	57.2
Vanadium	7440-62-2	Inorganic	101
Zinc	7440-66-6	Inorganic	580
Total High Molecular Weight PAHs	RACALC-HPAH	PAH	104
Total Low Molecular Weight PAHs	RACALC-LPAH	PAH	11.5
Total PAHs	RACALC-PAH	PAH	116

			Surface Water (ug/L) [1,2]
COPEC	CAS	Class	Maximum Detected Concentration
Barium	7440-39-3	Inorganic	135
Copper	7440-50-8	Inorganic	7.6

Notes

mg/kg = milligram per kilogram

ug/L = micrograms per liter

CAS = Chemical Abstracts Service.

COPEC = contaminant of potential ecological concern.

HMW = High molecular weight.

LMW = Low molecular weight.

PAH = polyaromatic hydrocarbons.

Pest = pesticide.

^[1] The COPEC presented as totals (i.e., low/high molecular weight PAHs and DDx) are the maximum of the sum of the individual constituent parameters.

^[2] Detected chemicals are presented.

Table 5-1 Surface Water Risk Characterization Aquatic Biota Assessment Endpoint (detected COPEC)

Greenwich High School 10 Hillside Road Greenwich, CT

COPEC Downstream	CAS Number	Class	Aquatic Life Screening Level	Amphibian Screening Level	Units	Maximum Detected Concentration	Step 2 Risk cannot be excluded. Carry through to Step 3	EPC	HQ (EPC/ALSL)
Barium	7440-39-3	Inorganic	3.9	NA	ug/L	135	YES	135	34.6
Copper	7440-50-8	Inorganic	4.8	15	ug/L	7.6	YES	8	1.6

Notes:

Aquatic life screening levels (AQSL) are presented in Table 3.2.

Shading = indicates exceedance of the aquatic life screening level.

EPC = exposure point concentration.

μg/L = micrograms per liter.

MDC = maximum detected concentration. Used as EPC where insufficient samples for statistical analysis exist, or where the calculation was not needed.

ME = magnitude of exceedance.

NA - Not available.

NC - Not calculated.

AQSL = Aquatic Life Screening Level.

Table 5-1 Surface Water Risk Characterization Aquatic Biota Assessment Endpoint (detected COPEC)

Step 3A Risk Characterization. Is there potential ecological risk?	Comment
YES. Area EPC > SL. Total of 5 samples, average conc.124 μg/L. 5 of 5 samples detected, all 5 detected locations exceed.	Detected throughout downstream sampling locations. Concentrations may represent local background (uniform enrichment noted in soil and sediment). The potential for unacceptable risk not expected but cannot be dismissed based on current data.
YES. Area EPC > SL. Total of 5 samples, average conc.6.06 μg/L. 3 of 5 samples detected, all 3 detected locations exceed.	Concentrations may represent local background (uniform enrichment noted in soil and sediment). The potential for unacceptable risk not expected but cannot be dismissed based on current data.

Table 5-2 Sediment Risk Characterization Benthic Biota Assessment Endpoint

COPEC Downstream	CAS Number	Class	Step 2 Sediment Threshold (Low) Level [1] (mg/kg)	Probable (High)	Sediment Probable (High) Level Source/Basis	Maximum Detected Concentration (mg/kg)	Step 2 Risk cannot be excluded. Carry through to Step 3	EPC (mg/kg)	ME (EPC/PEL)	Step 3A Risk Characterization. Is there potential ecological risk?	Comments
Arsenic	7440-38-2	Inorganic	9.79	33	Buchman 2008, PEC	14.2	YES	14.2	0.4	NO. EPC does not exceed (high)	
Barium	7440-39-3	Inorganic	0.7 "background"	NA	Buchman 2008	823	YES	823	1176	screening Unknown. EPC > "background" level. Potential toxicity cannot be predicted based on background exceedance.	Exceedance based on comparison to sediment "background" value per Buchman 2008, which was used for initial (threshold) screening; threshold (low) and probable (high) levels not available. However, Connecticut soil is enriched in barium, with an average concentration of 400 mg/kg (EPA 2005). Eastern U.S. barium levels range from 10 to 1500 mg/kg (average 420 mg/kg). The observed concentrations of barium are likely attributable to background conditions. The potential for unacceptable risk is not expected but cannot be dismissed based on current data.
Cadmium	7440-43-9	Inorganic	0.99	4.98	Buchman 2008, PEC	2.83	YES	2.83	0.6	NO. EPC does not exceed (high) screening	
Chromium	7440-47-3	Inorganic	43.4	111	Buchman 2008, PEC	95.5	YES	95.5	0.9	NO. EPC does not exceed (high)	
Copper	7440-50-8	Inorganic	31.6	149	Buchman 2008, PEC	416	YES	416	2.8	YES. Area EPC > (high) SL	
Lead	7439-92-1	Inorganic	35.8	128	Buchman 2008, PEC	305	YES	305	2.4	YES. Area EPC > (high) SL	
Mercury	7439-97-6	Inorganic	0.18	1.1	Buchman 2008, PEC	0.58	YES	0.58	0.5	NO. EPC does not exceed (high) screening	
Nickel	7440-02-0	Inorganic	22.7	48.6	Buchman 2008, PEC	57.2	YES	57.2	1.2	YES. Area EPC > (high) SL	
Vanadium	7440-62-2	Inorganic	50 "background"	NA	Buchman 2008	101	YES	101	2.0	Unknown. EPC > "background" level. Potential toxicity cannot be predicted based on background exceedance.	The EPC exceeds "background". Threshold (low) and probable (high) levels are not available. Connecticut soil background for vanadium has an average concentration of 60 mg/kg (EPA 2005) and eastern U.S. soil concentrations range from 7 to 300 mg/kg (average 66 mg/kg). The potential for unacceptable risk is not expected.
Zinc	7440-66-6	Inorganic	121	459	Buchman 2008, PEC	580	YES	580	1.3	YES. Area EPC > (high) SL	

Table 5-2 Sediment Risk Characterization Benthic Biota Assessment Endpoint

Greenwich High School 10 Hillside Road Greenwich, CT

COPEC	CAS Number		Step 2 Sediment Threshold (Low) Level ^[1] (mg/kg)	Probable (High)	Probable (High) Level	Maximum Detected Concentration (mg/kg)	Step 2 Risk cannot be excluded. Carry through to Step 3	EPC (mg/kg)	ME (EPC/PEL)	Step 3A Risk Characterization. Is there potential ecological risk?	Comments
Total HMW	RACALC-	PAH	0.193	6.5	Buchman 2008, UET	104.4	YES	104.4	16.1	YES. Area EPC > (high) SL	
PAHs	HPAH										
Total LMW	RACALC-	PAH	0.07642	5.3	Buchman 2008, UET	11.5	YES	11.5	2.2	YES. Area EPC > (high) SL	
PAHs	LPAH										
Total PAHs	RACALC-PAH	PAH	1.6	22.8	Buchman 2008, PEC	116.4	YES	116.4	5.1	YES. Area EPC > (high) SL	

Notes:

mg/kg = milligram per kilogram

CAS = Chemical Abstracts Service.

COPEC = contaminant of potential ecological concern.

HMW = High molecular weight.

LMW = Low molecular weight.

MDC = maximum detected concentration. Used as EPC where insufficient samples for statistical analysis exist, or where the calculation was not needed.

NA - Not available

PAH = polyaromatic hydrocarbons.

[1] The low screen represents the threshold, or "possible effect" level. Screening values are derived as follows (in order of preference, see also Table 3-5):

TEC = The consensus threshold effect concentration TEC listed in McDonald et al. (2000). This is the preferred screening levels, as they are derived for freshwater biota.

TEL = The TEL or the ARCS TEL listed in Buchman (2008).

LEL = Lowest effect level listed in Buchman (2008)

SQB = Sediment quality benchmark for freshwater sediment per Jones et al (1997).

SLV = Screening Level Values (SLVs) for Freshwater Sediment as listed in EPA Region III Biological Technical Assisstance Group (EPA 2006).

ESL = Ecological screening levels for freshwater sediment as listed in EPA Region 5 Ecological Screening Levels (EPA 2003).

[2] The high screen represents the probable, or "probable effect" level. Screening levels are derived as follows (in order of preference):

PEC = Freshwater concensus probable effecet concentration (PEC) listed in McDonald et al. (2000) as cited by Buchman (2008). This is the preferred screening level.

PEL = Freshwater PEL listed in Buchman (2008).

SEL = secondary effect level listed in Buchman (2008)

UET = Freshwater Washington State Upper Effect Threshold values, as listed in Buchman (2008)

SLV = Screening Level Values (SLVs) for Freshwater Sediment as listed in EPA Region III Biological Technical Assisstance Group (EPA 2006).

ESL = Ecological screening levels for freshwater sediment as listed in EPA Region 5 Ecological Screening Levels (EPA 2003).

References:

Buchman, M.F. 2008. National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRT). NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoriation Division, National Oceanic and Atmospheric Asministration (NOAA)., 34p Jones, D.S., G.W. Suter II, and R.N. Hull. 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota. Oak Ridge National Laboratory, Oak Ridge TN.

Shaklette and Boerngen, 1984. Element Concnetrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional paper 1270: An account of the concnetrations of 50 chemical elements in samples of soils and other regoliths. July 1984.

EPA. 1996. Ecotox Thresholds. In: ECO Update Intermittent Bulletin Volume 3, Number 2. U.S. EPA Office of Solid Waste Management and Emergency Response (OSWER). EPA 540/F-95/038. January

EPA. 2003. RCRA Corrective Action Ecological Screening Levels (ESLs). U.S EPA Region 5. August 22, 2003. (Sediment ESL)

EPA. 2005. Guidance for Developing Ecological Soil Screening Levels. Office of Emergency and Remedial Response. Washington D.C.November 2003, Revised February 2005.

EPA. 2006. EPA Region III Biological Technical Assisstance Group. Screening Level Values for Freshwater and Marine Sediment and Freshwater and Marine Water to be used at Superfund Sites. July/August 2006.

Table 5-3 Step 2 Food Web Model -Evaluation for Aquatic-Feeding Birds and Mammals

			Downs	stream				Downs	stream		
	Great Blu	ue Heron	Mal	lard	Mi	nk	Raco	oon	Mus	krat	
		d and Drinking iter	,	d and Drinking iter	Sediment, Foo Wa	_	Sediment, Foo Wa	•	Sediment, Foo Wa	•	
	Otential Daily Dose (mg/kgbw/day)	NOAEL-based HQ	Potential Daily Dose (mg/kgbw/day)	NOAEL-based HQ	Potential Daily Dose (mg/kgbw/day)	NOAEL-based HQ	otential Daily Dose (mg/kgbw/day)	NOAEL-based HQ	Potential Daily Dose (mg/kgbw/day)	NOAEL-based HQ	
COPEC	_		_		_		_		_		
ARSENIC	3.9E-02	1.8E-02	3.9E-01	1.7E-01	1.4E-01	1.4E-01	1.9E-01	1.8E-01	3.9E-02	3.7E-02	
BARIUM	2.0E+00	4.9E-02	7.4E+00	1.8E-01	5.4E+00	1.0E-01	5.4E+00	1.1E-01	9.2E+00	1.8E-01	
CADMIUM	2.6E-02	1.8E-02	8.6E-01	5.9E-01	1.7E-01	2.3E-01	3.7E-01	4.8E-01	7.8E-02	1.0E-01	
CHROMIUM, TOTAL	2.5E-01	9.3E-02	1.8E+00	6.9E-01	8.1E-01	3.4E-01	9.7E-01	4.1E-01	2.8E-01	1.2E-01	
COPPER	2.9E+00	7.0E-01	8.2E+01	2.0E+01	1.8E+01	3.1E+00	3.5E+01	6.2E+00	1.5E+00	2.7E-01	
LEAD	8.3E-01	5.1E-01	7.4E+00	4.5E+00	2.9E+00	6.1E-01	3.7E+00	7.9E-01	4.7E-01	1.0E-01	
MERCURY	2.7E-03	6.0E-03	6.6E-02	1.5E-01	1.5E-02	1.5E-02	3.0E-02	3.0E-02	2.0E-02	1.9E-02	
NICKEL	2.4E-01	3.6E-02	5.1E+00	7.5E-01	1.2E+00	7.2E-01	2.2E+00	1.3E+00	1.6E-01	9.4E-02	
VANADIUM	2.3E-01	6.6E-01	4.4E-01	1.3E+00	5.8E-01	1.4E-01	3.9E-01	9.5E-02	3.6E-02	8.6E-03	
ZINC	5.1E+00	7.7E-02	1.7E+02	2.5E+00	3.4E+01	4.5E-01	7.1E+01	9.4E-01	1.2E+01	1.6E-01	
TOTAL LMW PAHs	6.9E+00	2.5E-01	1.2E-01	4.4E-03	7.5E+00	1.1E-01	2.2E-01	3.3E-03	1.8E-01	2.7E-03	
TOTAL HMW PAHs	6.0E+00	2.2E-01	9.6E-01	3.5E-02	6.9E+00	1.1E+01	7.8E-01	1.3E+00	8.5E-01	1.4E+00	
TOTAL PAHs	3.7E+01	1.4E+00	1.1E+00	3.9E-02	4.0E+01	1.1E+01	1.4E+00	1.3E+00	9.8E-01	1.4E+00	

Notes:

Shaded cells indicate a HQ>1.

-- = Analyte was not identified with Step 2 HQ>1.

BW - Body Weight.

HMW - High Molecular Weight.

HQ = Hazard Quotient.

LOAEL - Lowest Observed Adverse Effects Level.

LMW - Low Molecular Weight. mg/kg - Miligram per kilogram.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.
PAHs - Polycyclic Aromatic Hydrocarbons.

[2] Refer to Appendix C for food web model calculations.

Table 5-4 Step 3A Food Web Model Evaluation for Aquatic-Feeding Birds and Mammals

							Do	wnstrean	1						
- <u></u>	Grea	t Blue He	eron		Mallard			Mink			Raccoon			Muskrat	
		nent, Foo nking Wa			nent, Foo nking Wa			nent, Foo nking Wa			ent, Foon			ent, Foo nking Wa	
	Potential Daily Dose (mg/kgbw/day)	LOAEL-based HQ	MATC-based HQ	Potential Daily Dose (mg/kgbw/day)	LOAEL-based HQ	MATC-based HQ	Potential Daily Dose (mg/kgbw/day)	LOAEL-based HQ	MATC-based HQ	Potential Daily Dose (mg/kgbw/day)	LOAEL-based HQ	MATC-based HQ	Potential Daily Dose (mg/kgbw/day)	LOAEL-based HQ	MATC-based HQ
COPEC	_			_			_			_			_		
ARSENIC	3.2E-02	7.0E-03	9.9E-03	2.7E-03	6.0E-04	8.6E-04	3.6E-02	2.1E-02	2.7E-02	3.6E-03	2.1E-03	2.7E-03	3.9E-02	2.3E-02	2.9E-02
BARIUM	1.6E+00	7.8E-03	1.7E-02	5.2E-02	2.5E-04	5.6E-04	1.4E+00	1.2E-02	1.8E-02	1.0E-01	8.6E-04	1.3E-03	9.2E+00	7.7E-02	1.2E-01
CADMIUM	2.1E-02	3.3E-03	6.8E-03	6.1E-03	9.6E-04	2.0E-03	4.5E-02	6.3E-03	1.9E-02	6.9E-03	9.8E-04	3.0E-03	7.8E-02	1.1E-02	3.4E-02
CHROMIUM, TOTAL	2.0E-01	2.2E-02	4.1E-02	1.3E-02	1.4E-03	2.6E-03	2.1E-01	5.9E-03	2.2E-02	1.8E-02	5.2E-04	2.0E-03	2.8E-01	8.0E-03	3.1E-02
COPPER	2.3E+00	1.9E-01	3.3E-01	5.8E-01	4.8E-02	8.3E-02	4.5E+00	4.8E-01	6.2E-01	6.6E-01	7.1E-02	9.1E-02	1.5E+00	1.6E-01	2.1E-01
LEAD	6.6E-01	2.0E-01	2.8E-01	5.2E-02	1.6E-02	2.2E-02	7.3E-01	8.2E-02	1.1E-01	7.0E-02	7.9E-03	1.1E-02		5.3E-02	
MERCURY	2.2E-03	2.4E-03	3.4E-03	4.6E-04	5.2E-04	7.3E-04	3.8E-03	7.5E-04	1.7E-03	5.6E-04	1.1E-04	2.5E-04	2.0E-02	3.9E-03	8.7E-03
NICKEL	1.9E-01	9.0E-03	1.6E-02	3.5E-02	1.7E-03	3.0E-03	3.1E-01	9.2E-02	1.3E-01	4.2E-02	1.2E-02	1.7E-02		4.7E-02	
VANADIUM	1.8E-01	2.6E-01	3.7E-01	3.1E-03	4.5E-03	6.4E-03	1.5E-01	1.8E-02	2.5E-02	7.5E-03	9.0E-04	1.3E-03	3.6E-02	4.3E-03	6.1E-03
ZINC	4.1E+00	2.1E-02	3.6E-02	1.2E+00	6.2E-03	1.0E-02	8.6E+00	3.0E-02	5.8E-02	1.3E+00	4.6E-03	9.0E-03	1.2E+01	4.0E-02	7.9E-02
TOTAL LMW PAHs	5.5E+00		9.0E-02	8.5E-04	6.2E-06	1.4E-05	1.9E+00		1.3E-02	4.1E-03	1.2E-05	2.8E-05		5.4E-04	
TOTAL HMW PAHs	4.8E+00		7.9E-02	6.7E-03	4.9E-05	1.1E-04		5.7E-01	1.3E+00	1.5E-02	4.8E-03	1.1E-02		2.7E-01	
TOTAL PAHs	2.9E+01	2.2E-01	4.8E-01	7.5E-03	5.5E-05	1.2E-04	1.0E+01	5.8E-01	1.3E+00	2.7E-02	4.8E-03	1.1E-02	9.8E-01	2.7E-01	6.1E-01

Notes

Shaded cells indicate a HQ>1.

-- = Analyte was not identified with Step 2 HQ>1.

BW - Body Weight.

HMW - High Molecular Weight.

HQ = Hazard Quotient.

LMW - Low Molecular Weight.

mg/kg - Miligram per kilogram.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

NC - Not Calculated.

PAHs - Polycyclic Aromatic Hydrocarbons.

[2] Refer to Appendix C for food web model calculations.

AECOM Environment

Appendix A

Photo Documentation of Downstream Area

Client Name:

Site Location: Background Area—North Pond

Project No.

Photo No.

Date: 10/1/2014

Direction Photo Taken:

Northwest

Description:

North Pond pictured looking toward outlet with East Putnam Ave (Route 1) in the background.

Photo No.

Date: 10/1/2014

Direction Photo Taken:

North

Description:

Inlet into North Pond conveying flow under East Putnam Ave (Route 1).

Client Name:

Site Location: Downstream Area—Upper Milbrook Pond

Project No.

Photo No. 3

Date: 10/2/2014

Direction Photo Taken:

South

Description:

Picture taken from north end of Upper Milbrook Pond looking south (downstream).

Photo No.

Date: 10/2/2014

Direction Photo Taken:

Southwest

Description:

Representative edge of Upper Milbrook Pond showing trees, residences and lawns. Inlet to Upper Milbrook Pond located to the right of picture.

Client Name:

Site Location: Downstream Area—Middle Milbrook Pond

Project No.

Photo No. 5

Date: 10/1/2014

Direction Photo Taken:

North

Description:

Middle Milbrook Pond pictured showing park along bank and in background inlet restricting flow from Upper Milbrook Pond.

Photo No.

Date: 10/1/2014

Direction Photo Taken:

South

Description:

Middle Milbrook Pond pictured showing outlet under W Brother Drive in background where flow continues toward Long Island Sound.

Client Name:

Site Location: Downstream Area—Middle Milbrook Pond

Project No.

Photo No. 7

Date: 10/1/2014

Direction Photo Taken:

NA

Description:

Posted sign in park near Middle Milbrook Pond indicating recent copper sulfate pesticide treatment to unspecified "lake'.

Photo No.

Date: 10/1/2014

Direction Photo Taken:

NA

Description:

Representative picture of sediment homogenization and freshwater mussel found in collected sediment.

AECOM Environment

Appendix B

Threatened and Endangered Species and National Wetland Inventory Documentation

Table B-1 Summary of Threatened and Endangered Species^[1] for Fairfield County, Connecticut

5
≶
\mathbf{g}
×
-

gio	Common Name	Scientific Name	State	Federal	Preferred Habitat	Source ^[2]	Potential Habitat Status
Species Wit	Species With State Concerns Identified by Connecticut Department of Environmental Protection	y Connecticut Department c	of Environme	intal Protect			
Amphibian	Blue-spotted salamander	Ambystoma laterale	E/SC		Found in forested wetland, riparian, scrub-shrub wetland and temporary pool habitats. In New England and New Jersey, generally associated with lowland swamps and marshes and surrounding uplands with sandy or loamy soils. Adults usually found beneath objects or underground. Eggs are attached to submerged sticks or bottom of shallow forest ponds and pools.	<u>e</u>	Habitat suitable for breeding, nesting and foraging is not consistent with the habitat associated with the site. Significant site presence is not expected.
Amphibian	Northern slimy salamander	Plethodon glutinosus	F		Occurs on wooded slopes, ravines, floodplains, shalebanks, and cave entrances; most often in hardwood forest, sometimes in pinelands. Generally under or in rotting logs, stumps, or leaf litter, or under rocks, during the day. Goes underground during dry or freezing weather. Eggs are laid in rotting logs, underground, or in rock crevices.	[a]	Primarily occurs in terrestrial habitat. Habitat suitable for breeding, nesting and foraging is not consistent with the habitat associated with the site. Significant site presence is not expected.
Bird	Great egret	Ardea alba	F		Occurs in forested wetland, riparian, herbaceous wetland and scrub-shrub wetland; and herbaceous/grassland upland (terrestrial) habitats. Prefers marshes, swampy woods, itdal estuaries, lagoons, mangroves, streams, lakes, and ponds; also fields and meadows. Nests primarily in tall trees, usually with other colonial water birds; in woods or thickets near water.	[a]	Potential habitat may be present, although spatially limited, in association with the site. Significant site presence is not expected.
Bird	Upland sandpiper	Bartramia longicauda	ш		Occur in bog/fen and upland habitats (cropland/hedgerow, grassland/herbaceous, old field). Prefer open tracts of short grassland habitat for breeding and nest in native prairie, dry meadows, pastures, domestic hayfields, short-grass savanna, plowed fields, along highway rights-of-way and on airfields.	[a]	Primarily occurs in terrestrial habitat. Habitat suitable for breeding, nesting and foraging is not consistent with the habitat associated with the site. Significant site presence is not expected.
Bird	American bittern	Botaurus lentiginosus	ш		Occur in herbaceous wetland and riparian habitat. Primarily large freshwater and (less frequently) brackish marshes, including lake and pond edges where cattails, sedges, or bulrushes are plentiful; and marshes where there are areas of open water and aquatic-bed vegetation. Also occurs in other areas with dense herbaceous cover, such as shrubby marshes, bogs, wet meadows, and occasionally hayfields. Readily uses wetlands created by impoundments: wetlands of 2.5 ha or more may support nesting; smaller wetlands may serve as alternate foraging sites.	[a]	Potential habitat may be present at or near the site, although suitable habitat at the site is limited. Significant site presence is not expected.
Bird	Snowy egret	Egretta thula	-		Occurs in marsh, lake, pond, lagoon, mangrove, and shallow coastal habitats. Nests in trees or shrubs or, in some areas, on ground or in marsh vegetation. Often nests with other colonial water birds. Nests typically built over water or on ground.	[a]	Potential habitat may be present at or near the site, although suitable habitat at the site is limited. Significant site presence is not expected.

Table B-1 Summary of Threatened and Endangered Species^[1] for Fairfield County, Connecticut

7
⋦
႘
ĬĬ
₹

			State	Federal		2	
Group	Common Name	Scientific Name	Status	Status	Preferred Habitat	Source	Potential Habitat Status
Bird	Common moorhen	Gallinula chloropus	ш		Prefers habitat simlar to that of other rails: freshwater or braskish marshes with tall emergent vegetation; also found in ponds, canals and rice fields. Primarily a grainivore feeding on seeds of aquatic grasses and sedges. Also consume invertebrates (e.g., snails) gleaned from vegetation.	[0]	Potential habitat may be present, although spatially limited, in association with the site. Significant site presence is not expected.
Bird	Bald eagle	Haliaeetus leucocephalus	F		Found near water bodies, including rivers, reservoirs and lakes. Nest in large trees with open crowns, especially in cottonwood and white pine trees along riparian areas.	[a]	Potential habitat may be present nearby. However, on site nesting and foraging habitat is spatially limited. Significant site presence is not expected.
Bird	Least bittern	Ixobrychus exilis	F		Prefers freshwater or braskish marshes with tall emergent vegetation. Primarily a pisicivore feeding on small fish and also invertebrates. Constructs nest on ground amidst dense/fall vegetation.	<u> </u>	Habitat suitable for nesting and foraging is not consistent with the habitat associated with the site. Significant site presence is not expected.
Bird	Black rail	Laterallus jamaicensis	Э		Prefers salt, brackish, and freshwater marshes, grassy swamps, pond borders and wet meadows breeding and non-breeding. Secretive, but may emerge from cover in early morning. Nests in or along edge of marsh, in area with saturated or shallowly flooded soils and dense vegetation, usually in nest site hidden by marsh grass or at base of Saliconria (in brackish/salt marshes); also nests on damp ground, on mat of previous year's dead grasses, or over very shallow water. Diet is omnivirous consisting of small invertebrates and seeds.		Habitat suitable for nesting and foraging is not consistent with the habitat associated with the site. Significant site presence is not expected.
Bird	Pied-billed grebe	Podilymbus podiceps	ш		Breeds in association with seasonal or permanent ponds with dense stands of emergent vegetation, bays and sloughs. Nests are typically built in shallow water surrounded by dense vegetation, especially cattail (<i>Typha spp.</i>) and bulrush (<i>Scirpus spp.</i>). Uses most types of wetlands during winter. Primarily feeds on fishes, crustaceans, insects; also amphibians, other invertebrates, and some plant material.	[<u>6</u>]	Potential habitat may be present nearby. However, on site nesting and foraging habitat is spatially limited. Significant site presence is not expected.
Bird	King rail	Rallus elegans	ш		Prefers freshwater marshes, upland-wetland marsh edges, ricefields or similar flooded farmland, and shrub swamps; also found locally in brackish and coastal salt marshes. Constructs nests in shallow water as an elevated platform of grasses, sedges, or rushes placed in clump of grass just above water, oten with a canopy and ramp. Diet composed of crustaceans, especially crayfish, aquatic insects and small fish.	[p] [e]	Potential habitat may be present nearby. However, on site nesting and foraging habitat is spatially limited. Significant site presence is not expected.
Invertebrate	Invertebrate Northern metalmark	Calephelis borealis	Э		Prefers habitats that are openings within (terrestrial) forested or wooded areas. Such openings may be natural outcrops, shale or limestone barrens, glades or powerline right of ways. Critical factors are presence of the primary larval foodplant (Senecio obovatus, ragwort) and nectar (e.g., orange milkweed, black eyed susan, daisy or fleabane flowers).	[8]	Terrestrial habitat suitable for foraging and reproduction is limited or absent at the Site. Significant site presence is not expected.

Table B-1 Summary of Threatened and Endangered Species^[1] for Fairfield County, Connecticut

•	3	5	
ì	ċ	5	
į	Č	j	
ļ	Į	l	
۱	ς	ζ	

Federal Status
Data regarding preferred habitat is limited. In New Jersey, typically found along small forested streams. In Michigan, noted to occur in lotic depositional headwater streams. Larvae are found in spring seepages and less frequently encountered in larger streams or at low elevations. Specifically require sandy substrate, silt, detritus, slow gradient, rock and soft substrates.
Found in dry usually scrubby oak barrens, woodlands or dry oak forest. Habitat varies regionally, for example in New England very strongly associated with scrub oak (Quercus Ilicifolia), but uses several oaks in New Jersey and in the southeast.
Occurs in hardwood and mixed savanna forests, and mixed/hardwood woodlands. Prefers wooded areas including glades, barrens, ridgetops as well as gullies and openings that occur in richer woods with an abundance of columbines. Habitat needs other than abundance of coulmbines are not fully defined.
Usually occurs within a rich, moist forest community matrix, such as mixed mesophytic forest, mesic oak-nickory forest, or cove forest. Within these settings, plants generally occur in partially open to open sites generated naturally and/or by human disturbance. These sites include streambanks, floodplains, serpentine barrens, glades, clearings, forest edges, roadsides, old railroad grades, dirt roads, trallsides, old fields, pastures, lawns, and parks. In habitats that are kept open by mowing, there seems to be an optimal mowing frequency that promotes the species' persistence.
Preferred habitat includesslow, shallow, muck-bottomed rivulets of sphagnum bogs, calcareous fens, marshy/sedgetussock meadows, spring seeps, wet cow pastures, and shrub swamps; the habitat usually contains an abundance of sedges or mossy cover. The turtles depend on a mosaic of microhabitats for foraging, nesting, basking, hibemation, and shelter. Other wildlife (beaver, deer, and cattle) may be important in maintaining the essential open-canopy wetlands.

Table B-1 Summary of Threatened and Endangered Species^[1] for Fairfield County, Connecticut

10 Hillside Road Greenwich, CT **Greenwich High School**

			State	Federal		[2]	
Group	Common Name	Scientific Name	Status	Status	Preferred Habitat	Source	Potential Habitat Status
Species Wit	Species With Federal Concerns Identified by USFWS	ed by USFWS					
Reptiles Bog turtle	Bog turtle	Glyptemys muhlenbergii		F	Preferred habitat includesslow, shallow, muck-bottomed rivulets of sphagnum bogs, calcareous fens, marshy/sedgetussock meadows, spring seeps, wet cow pastures, and shrub swamps, the habitat usually contains an abundance of sedges or mossy cover. The turles depend on a mosaic of microhabitats for foraging, nesting, basking, hibemation, and shelter. Other wildlife (beaver, deer, and cattle) may be important in maintaining the essential open-canopy wetlands.	[a]	Habitat suitable for nesting and foraging is not consistent with the habitat associated with the site. Significant site presence is not expected.

(1) The table presents threatened and endangered aquatic and aquatic-feeding species identified by Connecticut DEP (http://www.ct.gov/dep/cwp/view.asp?a=2702&q=323486) and United States Fish and Wildlife Service (USFWS).

Terrestrial, marine and state-listed special conern species are not presented.

12 Includes data obtained from Connecticut DEP interactive website (http://www.ct.gov/dep/cwp/view.asp?a=2702&q=323486) and additional species-specific data per NatureServe (2009). All other data obtained from site-specific inqueries to

United State Fish and Wildlife Service (USFWS) and other sources, as noted.

E = endangered

T = threatened

SC = special concern

References:

[a] NatureServe 2012. NatureServe Explorer. Interactive Database. Accessed August 27, 2012 at: http://www.natureserve.org/explorer/

[b] Bamor, B. K., and E. Kiviat. 2002. Common Moorhen (Galinula chloropus). In The Birds of North America, No. 685 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia, PA. As cited at: http://www.allaboutbirds.org/guide/Common_Moorhen/lifehistory. Accessed on line October 2, 2012.
[c] Gibbs, J. P., F. A. Reid, and S. M. Melvin. Least Bittem (ixobrychus exils). In The Birds of North America, No. 17 (A. Poole, P. Stettenheim, and F. Gill, eds.). Philadelphia: The Academy of Natural Sciences; Washington, DC: The American Ornithologists' Union. As cited at: http://www.allaboutbirds.org/guide/Least_Bittem/lifehistory. Accessed on line October 2, 2012.

[d] Meanley, B. 1992. King Rail (Rallus elegans). In The Birds of North America, No. 3 (A. Poole, P. Stetenheim, and F. Gill, Eds.). Philadelphia: The Academy of Natural Sciences; Washington, DC.: The American Ornithologists Union. As cited at: http://www.allaboutbirds.org/guide/King_Rail/lifehistory. Accessed on line October 2, 2012.

[e] MNFI 2012. Michigan Natural Features Inventory. Michigan State university Extension. Accessed on line October 2, 2012 at:http://mnfi.anr.msu.edu/explorer/species.cfm?id=12063

[f] NJOBES 2012. Tiger Spiketail (Cordulegaster erronea). New Jersey Odonates Enthusiasts. Accessed on line October 2, 2012 at: http://www.njodes.com/Speciesaccts/spiketails/sp

A County Report of Connecticut's Endangered, Threatened and Special Concern

Fairfield County

Amphibians

Scientific Name	Common Name	Protection Status
Ambystoma jeffersonianum	Jefferson salamander "complex"	SC
Ambystoma laterale	Blue-spotted salamander	E/SC
Plethodon glutinosus	Northern slimy salamander	Т

Birds

Scientific Name	Common Name	Protection Status
Accipiter striatus	Sharp-shinned hawk	E
Aegolius acadicus	Northern saw-whet owl	SC
Ammodramus caudacutus	Saltmarsh sharp-tailed sparrow	SC
Ammodramus henslowii	Henslow's sparrow	SC*
Ammodramus maritimus	Seaside sparrow	Т
Ammodramus savannarum	Grasshopper sparrow	Е
Ardea alha	Great egret	Т
Asio flammeus	Short-eared owl	Т
Asio otus	Long-eared owl	Е
Bartramia longicauda	Upland sandpiper	Е
Botaurus lentiginosus	American bittern	Е
Buteo platypterus	Broad-winged hawk	SC
Charadrius melodus	Piping plover	Т
Circus cyaneus	Northern harrier	Е
Cistothorus platensis	Sedge wren	Е
Dolichonyx oryzivorus	Bobolink	SC
Egretta caerulea	Little blue heron	SC
Egretta thula	Snowy egret	Т

Birds

Scientific Name	Common Name	Protection Status
Eremophila alpestris	Horned lark	Е
Falco peregrinus	Peregrine falcon	Т
Falco sparverius	American kestrel	Т
Gallinula chloropus	Common moorhen	E
Gavia immer	Common loon	SC
Haematopus palliatus	American oystercatcher	Т
Haliaeetus leucocephalus	Bald eagle	Т
Icteria virens	Yellow-breasted chat	Е
Ixobrychus exilis	Least bittern	Т
Laterallus jamaicensis	Black rail	Е
Melanerpes erythrocephalus	Red-headed woodpecker	Е
Nyctanassa violacea	Yellow-crowned night-heron	SC
Passerculus sandwichensis	Savannah sparrow	SC
Passerculus sandwichensis ssp. princeps	Ipswich sparrow	SC
Plegadis falcinellus	Glossy ibis	SC
Podilymbus podiceps	Pied-billed grebe	E
Pooecetes gramineus	Vesper sparrow	Е
Progne subis	Purple martin	Т
Rallus elegans	King rail	Е
Sterna dougallii	Roseate tern	Е
Sterna hirundo	Common tern	SC
Sternula antillarum	Least tern	T
Toxostoma rufum	Brown thrasher	SC
Tyto alba	Barn owl	Е

Fish

Scientific Name	Common Name	Protection Status
Acipenser oxyrinchus oxyrinchus	Atlantic sturgeon	T

Fish

Scientific Name	Common Name	Protection Status
Alosa aestivalis	Blueback herring	SC

Invertebrates

Scientific Name	Common Name	Protection Status
Badister transversus	Ground beetle	SC
Bembidion lacunarium	Ground beetle	SC
Bembidion pseudocautum	Ground beetle	SC
Bembidion semicinctum	Ground beetle	SC
Calephelis borealis	Northern metalmark	E
Celastrina neglectamajor	Appalachian blue	Т
Chlosyne harrisii	Harris' checkerspot	SC*
Cicindela formosa generosa	Pine barrens tiger beetle	SC
Cicindela marginata	Tiger beetle	SC
Cicindela tranquebarica	Dark bellied tiger beetle	SC
Citheronia regalis	Regal moth	SC*
Cordulegaster erronea	Tiger spiketail	Т
Eacles imperialis imperialis	Imperial moth	SC*
Erynnis brizo	Sleepy duskywing	Т
Erynnis lucilius	Columbine duskywing	E
Euphyes dion	Sedge skipper	SC
Fossaria rustica	Lymnaeid snail	SC
Lycaena hyllus	Bronze copper	SC
Margaritifera margaritifera	Eastern pearl shell	SC
Meropleon ambifuscum	Newman's brocade	SC
Procambarus acutus	Whiteriver crayfish	SC
Satyrodes eurydice	Eyed brown	SC
Stygobromus tenuis tenuis	Piedmont groundwater amphipod	SC
Valvata tricarinata	Turret snail	SC

Mammals

Scientific Name	Common Name	Protection Status
Lasiurus borealis	Red bat	SC

Plants

Scientific Name	Common Name	Protection Status
Acalypha virginica	Virginia copperleaf	SC
Agastache nepetoides	Yellow giant hyssop	Е
Agastache scrophulariifolia	Purple giant hyssop	Е
Ageratina aromatica	Small white snakeroot	E
Andromeda polifolia var. glaucophylla	Bog rosemary	T
Anemone canadensis	Canada anemone	T
Angelica venenosa	Hairy angelica	SC*
Antennaria howellii ssp. petaloidea	Field pussytoes	SC*
Aplectrum hyemale	Puttyroot	SC*
Arethusa bulbosa	Arethusa	SC*
Aristida longespica	Needlegrass	SC
Aristida purpurascens	Arrowfeather	SC
Aristida tuberculosa	Beach needle grass	Е
Aristolochia serpentaria	Virginia snakeroot	SC
Asclepias purpurascens	Purple milkweed	SC
Asplenium ruta-muraria	Wallrue spleenwort	T
Atriplex glabriuscula	Orache	SC
Betula pumila	Swamp birch	SC
Bidens beckii	Water-marigold	T
Bolboschoenus maritimus ssp. paludosus	Bayonet grass	SC
Bolboschoenus novae-angliae	Salt marsh bulrush	SC
Bouteloua curtipendula	Side-oats grama-grass	Е
Cardamine douglassii	Purple cress	SC
Carex aestivalis	Summer sedge	SC

6/14/2012 4

Plants

Scientific Name	Common Name	Protection Status
Carex alata	Broadwing sedge	Е
Carex alopecoidea	Foxtail sedge	Т
Carex barrattii	Barratt's sedge	Е
Carex bushii	Sedge	SC
Carex buxbaumii	Brown bog sedge	Е
Carex davisii	Davis' sedge	Т
Carex hitchcockiana	Hitchcock's sedge	SC
Carex prairea	Prairie sedge	SC
Carex squarrosa	Sedge	SC
Carex sterilis	Dioecious sedge	SC
Carex trichocarpa	Sedge	SC
Carex tuckermanii	Tuckerman's sedge	SC
Carex typhina	Sedge	SC
Castilleja coccinea	Indian paintbrush	Т
Chamaelirium luteum	Devil's-bit	Е
Chenopodium rubrum	Coast blite	SC*
Coeloglossum viride	Long-bracted green orchid	E
Corallorhiza trifida	Early coral root	SC
Cryptogramma stelleri	Slender cliff-brake	Е
Cuphea viscosissima	Blue waxweed	SC*
Cuscuta coryli	Hazel dodder	SC*
Cynoglossum virginianum	Wild comfrey	SC*
Cypripedium parviflorum	Yellow lady's-slipper	SC
Desmodium glabellum	Dillenius' tick-trefoil	SC
Dichanthelium xanthophysum	Panic grass	SC*
Diplazium pycnocarpon	Narrow-leaved glade fern	Е
Draba reptans	Whitlow-grass	SC
Dryopteris goldiana	Goldie's fern	SC

6/14/2012 5

Plants

Scientific Name	Common Name	Protection Status
Eleocharis quadrangulata var. crassior	Spike-rush	Е
Elymus wiegandii	Wiegand's wild rye	SC
Equisetum pratense	Meadow horsetail	Е
Eriocaulon parkeri	Parker's pipewort	Е
Eurybia x herveyi	Hervey's aster	SC
Floerkea proserpinacoides	False mermaid-weed	E
Gaylussacia dumosa var. bigeloviana	Dwarf huckleberry	Т
Gentianella quinquefolia	Stiff gentian	E
Hasteola suaveolens	Sweet-scented Indian-plantain	Е
Heteranthera reniformis	Kidneyleaf mud-plantain	SC*
Honckenya peploides	Seabeach sandwort	SC
Hottonia inflata	Featherfoil	SC
Hudsonia tomentosa	False beach-heather	T
Hydrastis canadensis	Golden seal	Е
Hydrophyllum virginianum	Virginia waterleaf	SC
Hypericum ascyron	Great St. John's-wort	SC
Isotria medeoloides	Small whorled pogonia	Е
Juncus debilis	Weak rush	SC*
Krigia biflora	Two-flowered cynthia	SC
Leptochloa fusca ssp. fascicularis	Saltpond Grass	Е
Lespedeza repens	Creeping bush-clover	SC
Liatris scariosa var. novae-angliae	Blazing-star	SC
Limosella australis	Mudwort	SC
Linum sulcatum	Yellow flax	Е
Liquidambar styraciflua	Sweet gum	SC
Lyonia mariana	Stagger-bush	SC*
Malaxis unifolia	Green adder's-mouth	Е

Fairfield County

Plants

Scientific Name	Common Name	Protection Status
Nuphar advena	Large yellow pond lily	SC*
Nuphar microphylla	Small yellow pond lily	SC
Oenothera fruticosa	Sundrops	SC*
Onosmodium virginianum	Gravel-weed	E
Opuntia humifusa	Eastern prickly pear	SC
Orontium aquaticum	Golden club	SC
Orthilia secunda	One-sided pyrola	SC*
Panax quinquefolius	American ginseng	SC
Panicum amarum	Panic grass	Т
Paronychia fastigiata	Hairy forked chickweed	SC*
Phaseolus polystachios var. polystachios	Wild kidney bean	SC*
Pityopsis falcata	Sickle-leaved golden aster	Е
Platanthera ciliaris	Yellow-fringed orchid	Т
Platanthera flava var. herbiola	Pale green orchid	SC
Platanthera hookeri	Hooker's orchid	SC*
Podostemum ceratophyllum	Threadfoot	SC
Polygala cruciata	Field milkwort	Е
Polygala senega	Seneca snakeroot	Е
Potentilla arguta	Tall cinquefoil	SC
Prunus alleghaniensis	Alleghany plum	SC*
Ranunculus ambigens	Water-plantain spearwort	Е
Ranunculus pensylvanicus	Bristly buttercup	SC*
Ribes rotundifolium	Wild currant	SC
Rotala ramosior	Toothcup	Т
Sabatia stellaris	Marsh pink	Е
Sagittaria subulata	Arrowleaf	SC
Salix pedicellaris	Bog willow	Е
Salix petiolaris	Slender willow	SC

6/14/2012

Fairfield County

Plants

Scientific Name	Common Name	Protection Status
Salix serissima	Autumn willow	SC
Saururus cernuus	Lizard's tail	Е
Schoenoplectus acutus	Hard-stemmed bulrush	Т
Scleria triglomerata	Nutrush	E
Senna hebecarpa	Wild senna	SC
Silene stellata	Starry champion	Т
Sporobolus clandestinus	Rough dropseed	E
Sporobolus cryptandrus	Sand dropseed	T
Sporobolus neglectus	Small dropseed	Е
Stellaria borealis	Northern stitchwort	SC
Symphyotrichum prenanthoides	Crooked-stem aster	SC*
Taenidia integerrima	Yellow pimpernel	E
Thuja occidentalis	Northern white cedar	Т
Triosteum angustifolium	Narrow-leaved horse gentian	Е
Verbena simplex	Narrow-leaved vervain	SC*
Viburnum nudum	Possum haw	SC*
Viburnum prunifolium	Smooth black-haw	SC
Viola brittoniana	Coast violet	E
Viola hirsutula	Southern wood violet	SC*
Viola nephrophylla	Northern bog violet	SC
Vitis x novae-angliae	New England grape	SC
Waldsteinia fragarioides	Barren strawberry	Е
Xyris montana	Northern yellow-eyed grass	Т
Zizia aptera	Golden Alexanders	E

Reptiles

Scientific Name	Common Name	Protection Status
Caretta caretta	Loggerhead	T

6/14/2012

Fairfield County

Reptiles

Common Name	Protection Status
Atlantic green turtle	Т
Timber rattlesnake	Е
Leatherback	E
Wood turtle	SC
Bog turtle	E
Eastern hognose snake	SC
Atlantic ridley	Е
Smooth green snake	SC
Eastern box turtle	SC
Eastern ribbon snake	SC
	Atlantic green turtle Timber rattlesnake Leatherback Wood turtle Bog turtle Eastern hognose snake Atlantic ridley Smooth green snake Eastern box turtle

E = Endangered, T = Threatened, SC = Special Concern, * Believed Extirpated

State of Connecticut Department of Energy and Environmental Protection Bureau of Natural Resources, Wildlife Division 79 Elm St., Hartford, CT 06106

6/14/2012

Group	Name	Population	Status	Lead Office	Recovery Plan Name	Recovery Plan Stage
Birds	Piping Plover (Charadrius	except Great Lakes watershed	Threatened	Office Of The Regional Director	Office Of The Regional Director Great Lakes & Northern Great Final	Final
Birds	Piping Plover (Charadrius	except Great Lakes watershed	Threatened	Office Of The Regional Director Piping Plover Atlantic Coast	Piping Plover Atlantic Coast	Final Revision 1
Reptiles	Hawksbill sea turtle		Endangered	North Florida Ecological	Recovery Plan for the Hawksbill Final Revision	Final Revision 1
Reptiles	Hawksbill sea turtle		Endangered	North Florida Ecological	Recovery Plan for U.S. Pacific Final Revision	Final Revision 1
Reptiles	Leatherback sea turtle		Endangered	North Florida Ecological	Recovery Plan for U.S. Pacific Final Revision	Final Revision 1
Reptiles	Leatherback sea turtle		Endangered	North Florida Ecological	Recovery Plan for Leatherback Final Revision	Final Revision 1
Reptiles	Green sea turtle (Chelonia	except where endangered	Threatened	North Florida Ecological	Recovery Plan for U.S. Pacific Final Revision	Final Revision 1
Reptiles	Green sea turtle (Chelonia	except where endangered	Threatened	North Florida Ecological	Recovery Plan for U.S.	Final Revision 1
Reptiles	Bog (=Muhlenberg) turtle	northern	Threatened	Assistant Regional Director-	Recovery Plan for the Bog	Final

U.S. Fish and Wildlife Service

National Wetlands Inventory

Milbrook Ponds, Downstream of GHS

May 19, 2017

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Appendix C

Off-site Sediment and Surface Water Sampling Results (On CD)

AECOM 500 Enterprise Drive Suite 1A Rocky Hill, CT 06067 www.aecom.com 860.263.5800 tel 860.263.5777 fax

October 16, 2017

Amy Siebert, Commissioner Greenwich Department of Public Works 101 Field Point Road Greenwich, CT 06830

RE: Off-site Sediment and Surface Water Results

Greenwich High School 10 Hillside Road Greenwich, Connecticut

Dear Ms. Siebert:

AECOM Technical Services, Inc. (AECOM) is herein providing the results of the sediment sampling conducted associated with the Greenwich High School (the site) environmental investigation activities. Sampling activities were conducted in July 2013 and October 2014. The sampling results are being used to support a Screening Level Ecological Risk Assessment (SLERA) Addendum, which is being prepared for submission to the Connecticut Department of Energy and Environmental Protection (DEEP).

Introduction

AECOM conducted sediment and surface water sampling in West Brother Brook upstream of the site, North Pond, located south of the site and upstream of the confluence of West Brothers Brook and Greenwich Creek and the two ponds located downstream of the site, south of East Putnam Avenue (US Route 1). A site location map is provided as **Figure 1**. The upstream investigation was conducted in July 2013, and the downstream investigation was conducted in October 2014. Each sampling event included the collection of surficial sediment samples and co-located surface water samples.

Project Objective

The upstream investigation was conducted to determine if any of the constituents of concern (COCs) identified in site sediment may have migrated to the site from potential upstream sources.

The downstream investigation was conducted to investigate whether COCs from the site have been transported to the downstream water bodies from the site. The objectives of the investigative activities were to:

- Determine if COCs have migrated to downstream sediments;
- Investigate sediment type and general characteristics of the downstream area; and
- · Characterize downstream surface water and sediment quality.

Project Description

The following activities were completed during the investigations:

- Upstream
 - Collection and analysis of four sediment samples and co-located surface water samples and associated QA/QC samples.
- Downstream
 - Collection and analysis of six sediment samples and co-located surface water samples and associated QA/QC samples.

Site Setting

West Brothers Brook flows southeast through residential neighborhoods located northwest of the site and enters the site near the northwestern corner of the athletic fields. On-site, West Brothers brook flows south through a culverted concrete channel along the western perimeter of the site, turning east, then north where it becomes a natural channel before bending south again and flowing to Cider Mill Pond. From Cider Mill Pond, West Brothers Brook exits the site near the southeastern corner of the property flowing through a culvert underneath Route 1. Immediately south of Route 1, West Brothers Brook discharges to Greenwich Creek.

The downstream area ponds are located along Greenwich Creek south of Route 1. North Pond is located approximately 200 feet upstream of the confluence of West Brothers Brook and Greenwich Creek and is approximately 0.5 acres in area. South of the confluence with West Brothers Brook, Greenwich Creek flows through a short natural channel and then a concrete-lined channel surrounded by residences before flowing into Upper Milbrook Pond. Upper Milbrook Pond is located approximately 900 feet south of Route 1 and is approximately 18 acres in area. Middle Milbrook Pond is approximately 1 acre in area and is separated from Upper Milbrook Pond by a constructed dam. To the east of the Milbrook Ponds is the Milbrook Country Club, and to the west, are residential neighborhoods.

The banks of the ponds are built up with stones and large cobble, with residential lawns and yards abutting the waterline.

Because North Pond is upstream of the confluence of West Brothers Brook and Greenwich Creek, it serves as a reference location for the downstream Milbrook Pond sampling stations.

Rationale for Scope of Work

The primary goals of the supplemental investigations activities were to:

- · Support the SLERA Addendum;
- · Evaluate potential migration of COCs onto the site from potential upstream sources;
- Evaluate potential migration of COCs to downstream water bodies;
- Further evaluate current downstream conditions and potential offsite contributors to contamination of the lower ponds.

Field Activities

Upstream Activities

Upstream sampling activities were coordinated through Town of Greenwich Department of Public Works personnel, who accompanied AECOM during the initial site visit to help identify sampling locations. Sampling locations were selected to minimize disturbance to nearby residences in areas where safe stream access was available. Upstream sampling locations are shown on **Figure 2**.

Surficial sediment and water samples were collected from four upstream locations in West Brothers Brook on July 25, 2013. Sampling was conducted from downstream to upstream to ensure that any disturbed sediments were not subsequently collected in downstream sediment or surface water samples. Water samples were collect before sediment samples at each location to prevent adding suspended solids to the water column. Water samples were collected in laboratory-supplied glassware from the mid-point of the water column. Sediment samples were collected using a stainless steel hand auger, which was decontaminated prior to each use to prevent cross-contamination during sampling.

Water samples were submitted for laboratory analysis of metals, polycyclic aromatic hydrocarbons (PAHs), and pesticides. Sediment samples were submitted for laboratory analysis of metals, PAHs, pesticides and PCBs. Two field duplicates were taken, one for water and one for sediment, and were included in the sample set for analysis. Laboratory analysis was performed by Spectrum Analytical Inc. of Agawam, Massachusetts (Spectrum).

Downstream Activities

Downstream sampling activities were conducted under an access agreement between the Town of Greenwich and Milbrook Owners Association, Inc (MOA). AECOM coordinated with Mr. Rick Sirvaitis of the MOA prior to commencing field activities.

Surficial sediment and water samples were collected from the downstream area ponds on October 1 and 2, 2014. During the sampling event surficial sediment samples were collected from 6 locations and 6 water samples were collected from the mid-point of the water column using a peristaltic pump and associated tubing. Collection of all samples occurred from a Jon Boat equipped with an electric trolling motor. Sediment and water sample locations are shown on **Figure 3**.

Predetermined sample locations were navigated to in the field using a GPS with sub-meter accuracy and aerial imagery. Select sampling locations were field-adjusted based on field conditions to collect samples from depositional environments where sediment transported from upstream would be likely to settle out of the water column. Sampling was conducted from downstream to upstream, to ensure that any disturbed sediments were not subsequently collected in subsequent sediment or surface water samples. Sample time, water depth, water sample depth, sediment type and any pertinent sample location notes were recorded in a project dedicated field logbook.

Once on station, water depth was recorded to determine the mid-point of the water column and water collection depth. Fresh tubing was connected to the peristaltic pump at each sample location. Water samples were collected from the mid-depth of the water column and placed in laboratory prepared,

clean glassware. Sediment samples were collected after the collection of water samples to avoid adding suspended solids to the water column. Sediment samples were collected using an Ekman Dredge; and material collected was placed into a decontaminated stainless steel mixing bowl and homogenized before being placed into lab cleaned glassware. Sediment sampling equipment was field decontaminated prior to the collection of each sample.

Water samples were submitted for laboratory analysis of metals, PAHs, and pesticides. Sediment samples were submitted for laboratory analysis of metals, PAHs, pesticides, and PCBs. Two field duplicates were taken, one for water and one for sediment, and were included in the sample set for analysis. Laboratory analysis was performed by Spectrum Analytical Inc. of Agawam, Massachusetts (Spectrum).

Upstream Sampling Results

Upstream sediment sampling results are summarized in **Table 1**. PCBs were not detected in any of the samples. PAHs were detected in only one of the samples (SED-BBUS-3). Pesticides were detected in two of the samples (SED-BBUS-1 and SED-BBUS-3). Arsenic, barium, chromium copper, lead, nickel, vanadium and zinc were detected in one or more of the samples.

Upstream surface water sampling results are summarized in **Table 2**. PAHs were detected in four of the samples (SW-BBUS-1, SW-BBUS-2, SW-BBUS-3, SW-BBUS-4). Metals (barium, cadmium, and zinc), and pesticides (dieldrin) were detected in one or more of the samples.

Downstream Area Sampling Results

Downstream area sediment sampling results are summarized in **Table 3**. PCBs were not detected in the downstream sediment samples. PAHs and metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, vanadium and zinc) were detected in one or more of the samples.

Downstream area surface water sampling results are summarized in **Table 4**. PAHs and pesticides were not detected in any of the samples. Barium was detected in all the samples. No other metals were detected.

The sediment sample collected from North Pond (SED-DOWNSTREAM-01) contained PAHs, metals (barium, chromium, copper, lead, nickel, vanadium and zinc) and pesticides (4,4-DDT). The surface water sample from this location contained barium.

Discussion

The results of the upstream and downstream sediment and surface water investigations are being incorporated into the SLERA addendum report and will be discussed further therein.

If you should have any questions regarding this summary report, please do not hesitate to contact the undersigned.

Patrick Haskell, LEP

Senior Technical Specialist

Regards,

Matthew Rood, LEP Project Engineer

cc: Jane Warren, McCarter & English

Attachments:

Attachment I Data Summary Tables

Attachment II Figures

Attachment III Laboratory Reports

AECOM

Attachment I Data Summary Tables

Table 1 Upstream Sediment Sampling Results

Sample ID Depth (ft bgs) Sample Date	SED-BBUS-1 0-0.5 7/25/2013	SED-BBUS-2 0-0.5 7/25/2013	SED-BBUS-2 0-0.5 7/25/2013	SED-BBUS-3 0-0.5 7/25/2013	SED-BBUS-4 0-0.5 7/25/2013
SVOCs-SIM (ug/Kg)					
Benzo(b)fluoranthene	<76	<77	<78	940	<87
Fluoranthene	<76	<77	<78	1100	<87
Pyrene	<76	<77	<78	1100	<87
Total PAHs	<0	<0	<0	3140	<0
Metals (mg/Kg)					
Antimony	<5.93	<5.69	<5.74	<5.54	<6.48
Arsenic	4.48	<1.71	1.89	2.09	3.37
Barium	66.6	94	93.8	40.1	111
Chromium	19.2	25.9	22.6	13.1	36.8
Copper	16.2	15.8	19.2	14.5	16.4
Lead	11.5	4.63	4.65	50.9	7.39
Nickel	15.1	14.6	14.8	14.4	21.2
Silver	<1.78	<1.71	<1.72	<1.66	<1.94
Vanadium	24.9	30.5	26.3	21	38.7
Zinc	33.4	41	35.2	33.9	60.3
PCBs (ug/Kg)					
Total PCBs	<0	<0	<0	<0	<0
Pesticides (ug/Kg)					
4,4-DDD (p,p)	<9.67	<10.5	<10.3	16	<10.7
4,4-DDE (p,p)	23.4	<6.56	<6.44	22.5	<6.71
4,4-DDT (p,p)	20.1	<10.5	<10.3	30.7	<10.7
alpha-Chlordane	17.3	<6.56	<6.44	5.83	<6.71
Chlordane	78.5	<26.2	<25.7	49.5	<26.9
Total DDT	43.5	<0	<0	69.2	<0

Notes

This is a summary table. Only detected chemicals are presented.

<0.010 = Not detected above given laboratory reporting limit.

mg/kg = milligram per kilogram

ug/kg = microgram per kilogram

SIM = Selective Ion Monitoring; a method performed for the PAH subgroup of SVOC analytes to obtain lower detection limits

SVOC = semivolatile organic compound

PCB = polychlorinated biphenyl

PAH = polycyclic aromatic hydrocarbon

Table 2 Upstream Surface Water Sampling Results

Location ID Sample Date	SW-BBUS-1 7/25/2013	SW-BBUS-2 7/25/2013	SW-BBUS-2 7/25/2013	SW-BBUS-3 7/25/2013	SW-BBUS-4 7/25/2013
PAHs-SIM (ug/L)	1723/2013	1723/2013	1723/2013	1723/2013	1723/2013
Benzo(a)anthracene	<0.050	<0.050	<0.050	0.288	<0.050
Benzo(a)pyrene	<0.050	<0.050	<0.050	0.375	0.064
Benzo(b)fluoranthene	<0.050	<0.050	<0.050	0.379	0.068
Benzo(g,h,i)perylene	<0.050	<0.050	<0.050	0.272	0.05
Benzo(k)fluoranthene	<0.050	<0.050	<0.050	0.318	0.056
Chrysene	<0.050	<0.050	<0.050	0.373	0.054
Fluoranthene	0.084	<0.050	0.097	0.728	0.131
Indeno(1,2,3-cd)pyrene	<0.050	<0.050	<0.050	0.31	0.056
Phenanthrene	0.057	<0.050	0.077	0.341	0.096
Pyrene	0.064	<0.050	0.075	0.605	0.103
Total PAHs	0.205	<0	0.249	3.989	0.678
Total Metals (mg/L)					
Barium	0.0958	0.0858	0.122	0.105	0.0879
Cadmium	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
Copper	0.0072	<0.0050	0.0086	0.0058	<0.0050
Lead	<0.0075	<0.0075	<0.0075	<0.0075	<0.0075
Silver	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Thallium	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Zinc	0.02	0.0117	0.0265	0.0197	0.122
Pesticides (ug/L)					
Dieldrin	0.031	0.018	0.003	0.004	0.003

Notes:

This is a summary table. Only detected chemicals are presented except when no analytes were detected for an analysis.

< 0.010 = Not detected above given laboratory reporting limit.

mg/L = milligram per liter

ug/L = microgram per liter

PAH = polycyclic aromatic hydrocarbon

SIM = Selective Ion Monitoring; a method performed for the PAH subgroup of SVOC analytes to obtain lower detection limits

SVOC = semivolatile organic compound

Table 3 Downstream Area Sediment Sampling Results

Location ID	SED-DOWNSTREAM-01	SED-DOWNSTREAM-01	SED-DOWNSTREAM-02	SED-DOWNSTREAM-03	SED-DOWNSTREAM-04	SED-DOWNSTREAM-05	SED-DOWNSTREAM-06
Depth Interval (ft bgs)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Sample Date	10/2/2014	10/2/2014	10/1/2014	10/1/2014	10/1/2014	10/1/2014	10/1/2014
PAH-SIMS (ug/kg)							
Acenaphthene	130	< 110	< 170	< 410	< 390	< 460	< 1000
Acenaphthylene	100	< 110	< 170	< 410	< 390	< 460	< 1000
Anthracene	670	360	310	< 410	1400	670	< 1000
Benzo(a)anthracene	2100	1700	910	810	9600	1900	< 1000
Benzo(a)pyrene	2100	1600	850	810	9100	2300	< 1000
Benzo(b)fluoranthene	3100	2500	1200	1400	13000	4100	2200
Benzo(g,h,i)perylene	1100	1100	620	610	6000	1900	< 1000
Benzo(k)fluoranthene	1300	1100	570	690	6500	1700	< 1000
Chrysene	2600	2000	970	1000	9300	3100	1900
Dibenzo(a,h)anthracene	280	< 110	< 170	< 410	< 390	< 460	< 1000
Fluoranthene	6800	5000	2500	2200	24000	6100	3500
Fluorene	260	160	< 170	< 410	610	< 460	< 1000
Indeno(1,2,3-cd)pyrene	2000	1400	740	830	7900	2300	< 1000
Phenanthrene	3700	2400	1400	670	9500	2200	1500
Pyrene	5000	3900	1800	1800	19000	4800	2600
Total PAHs	31240	23220	11870	10820	115910	31070	11700
Metals (mg/kg)							
Arsenic	< 2.05	< 2.21	6.45	13.6	10.0	14.2	< 21.6
Barium	70.8	71.7	229	719	502	823	815
Cadmium	< 0.682	< 0.736	< 1.21	< 3.78	< 2.45	2.83	< 7.19
Chromium	28.3	18.1	38.3	91.8	74.2	95.5	58.6
Copper	25.1	18.7	81.7	416	256	353	408
Lead	32.3	23.1	183	273	212	305	148
Mercury	< 0.0399	< 0.0440	0.155	0.575	0.409	0.564	0.577
Nickel	9.30	8.64	21.9	56.3	44.1	57.2	47.2
Vanadium	19.1	20.1	40.6	95.3	80.8	101	82.4
Zinc	52.5	50.0	208	580	432	543	497
PCBs (ug/kg)							
Total PCB Aroclors	ND						
Pesticides (ug/kg)							
4,4-DDT (p,p)	15.7	< 13.0	< 20.2	< 63.3	< 45.9	< 50.5	< 118
Total DDx	15.7	ND	ND	ND	ND	ND	ND

Notes:

This is a summary table. Only detected chemicals are presented.

<0.010 = Not detected above given laboratory reporting limit.

Bold = Detected above reporting limit.

mg/kg = milligram per kilogram

ug/kg = microgram per kilogram

SIM = Selective Ion Monitoring; a method performed for the PAH subgroup of SVOC analytes to obtain lower detection limits

PCB = polychlorinated biphenyl

PAH = polycyclic aromatic hydrocarbon

Table 4 Downstream Area Surface Water Sampling Results

Greenwich High School 10 Hillside Road Greenwich, CT

Location ID	SW-DOWNSTREAM-01	SW-DOWNSTREAM-01	SW-DOWNSTREAM-02	SW-DOWNSTREAM-03	SW-DOWNSTREAM-04	SW-DOWNSTREAM-05	SW-DOWNSTREAM-06
Sample Date	10/2/2014	10/2/2014	10/1/2014	10/1/2014	10/1/2014	10/1/2014	10/1/2014
PAH-SIMS (ug/L)							
Total PAHs	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Metals (mg/L)							
Barium	0.106	0.100	0.119	0.122	0.123	0.122	0.135
Pesticides (ug/L)							
Pesticides	ND						

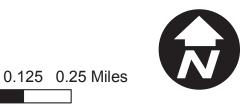
Votes:

This is a summary table. Only detected chemicals are presented except when no analytes were detected for an analysis.

< 0.010 = Not detected above given laboratory reporting limit.

mg/L = milligram per liter

ug/L = microgram per liter


PAH = polycyclic aromatic hydrocarbon

SIM = Selective Ion Monitoring; a method performed for the PAH subgroup of SVOC analytes to obtain lower detection limits

AECOM

Attachment II Figures

Site Locus

Off-site Sediment and Surface Water Report Greenwich, CT

Scale:	Date:	Project Number:
1" = 1/4 mi	6/29/2017	60432356

AECOM

AEC OM Environment 500 ENTER PRISE DR, STE 1A ROCKY HILL, CT 06067 (860) 263-5800 www.aecom.com

Figure Number

150

300 Feet

Upstream Sediment and Surface Water Samples

Off-site Sediment and Surface Water Report Greenwich, CT

Scale:	Date:	Project Number:
1" = 300'	6/29/2017	60432356

AECOM

AEC OM Environment 500 ENTER PRISE DR, STE 1A ROCKY HILL, CT 06067 (860) 263-5800 www.aecom.com

Figure Number

200

400 Feet

Downstream Sediment Samples

Off-site Sediment and Surface Water Report Greenwich, CT

Scale:	Date:	Project Number:
1" = 400'	6/29/2017	60432356

AECOM

AEC OM Environment 500 ENTER PRISE DR, STE 1A ROCKY HILL, CT 06067 (860) 263-5800 www.aecom.com

Figure Number

AECOM

Attachment III Laboratory Reports

Report Date: 02-Aug-13 16:16

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY Laboratory Report

AECOM Environment 500 Enterprise Drive, Suite 1A Rocky Hill, CT 06067

Attn: Malcolm Beeler

Project: Greenwich HS - Greenwich, CT

Project #: 60225155

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB73837-01	SED-BBUS-1-072513-1	Sediment	25-Jul-13 09:00	25-Jul-13 21:00
SB73837-02	SW-BBUS-1-072513-1	Surface Water	25-Jul-13 09:00	25-Jul-13 21:00
SB73837-03	SED-BBUS-2-072513-1	Sediment	25-Jul-13 10:00	25-Jul-13 21:00
SB73837-04	SW-BBUS-2-072513-1	Surface Water	25-Jul-13 10:00	25-Jul-13 21:00
SB73837-05	SED-BBUS-2-072513-2	Sediment	25-Jul-13 10:00	25-Jul-13 21:00
SB73837-06	SW-BBUS-2-072513-2	Surface Water	25-Jul-13 10:00	25-Jul-13 21:00
SB73837-07	SED-BBUS-3-072513-1	Sediment	25-Jul-13 10:30	25-Jul-13 21:00
SB73837-08	SW-BBUS-3-072513-1	Surface Water	25-Jul-13 10:30	25-Jul-13 21:00
SB73837-09	SED-BBUS-4-072513-1	Sediment	25-Jul-13 11:00	25-Jul-13 21:00
SB73837-10	SW-BBUS-4-072513-1	Surface Water	25-Jul-13 11:00	25-Jul-13 21:00
SB73837-11	Equipment Blank	Deionized Water	25-Jul-13 11:30	25-Jul-13 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Dicolo Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 61 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Reasonable Confidence Protocols Laboratory Analysis QA/QC Certification Form

Laboratory Name:Spectrum Analytical, Inc.Client:AECOM Environment - Rocky Hill, CT

Project Location: Greenwich HS - Greenwich, CT Project Number: 60225155

Sampling Date(s): Laboratory Sample ID(s): 7/25/2013 SB73837-01 through SB73837-11

RCP Methods Used:

EPA 245.1/7470A

SW846 6010C

SW846 7471B

SW846 8081B

SW846 8082A

SW846 8270D

SW846 8270D SIM

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓	Yes		No
1A	Were the method specified preservation and holding time requirements met?	✓	Yes		No
1B	<u>VPH and EPH methods only</u> : Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?		Yes	,	No
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	~	Yes		No
3	Were samples received at an appropriate temperature?	✓	Yes		No
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved?		Yes	✓]	No
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?		Yes Yes		No No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	✓	Yes		No
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	✓	Yes		No

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for obtaining the information contained in this analytical report, such information is accurate and complete.

Nicole Leja Laboratory Director

Micole Leja

Date: 8/2/2013

CASE NARRATIVE:

The samples were received 4.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Required site-specific Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be requested by the client and sufficient sample must be submitted for the additional analyses. Samples submitted with insufficient volume/weight will not be analyzed for site specific MS/MSD, however a batch MS/MSD may be analyzed from a non-site specific sample.

CTDEP has published a list of analytical methods which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of decisions being made utilizing the Reasonable Confidence Protocol (RCP). "Reasonable Confidence" can be established only for those methods published by the CTDEP in the RCP guidelines. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

The CTDEP RCP requests that "all non-detects and all results below the reporting limit are reported as ND (Not Detected at the Specified Reporting Limit)". All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

If no reporting limits were specified or referenced on the chain-of-custody the laboratory's practical quantitation limits were applied.

Tetrachloro-m-xylene is recommended as a surrogate by the CTDEP RCP for the following SW846 Methods 8081, 8082 and 8151. Spectrum Analytical, Inc. uses Tetrachloro-m-xylene as the Internal Standard for these methods and Dibromooctaflourobiphenyl as the surrogate.

For this work order, the reporting limits have not been referenced or specified.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Spikes:

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Antimony Lead

1318009-MSD1 Source: SB73837-07

The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon acceptable PS and /or LCS recovery.

Antimony Lead

Duplicates:

1318009-DUP1 Source: SB73837-07

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Arsenic

The RPD exceeded the QC control limits; however precision is demonstrated with acceptable RPD values for MS/MSD.

Lead

SW846 7471B

Duplicates:

1318010-DUP1 Source: SB73837-07

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Mercury

SW846 8081B

Spikes:

1317981-MS1 Source: SB73837-07

The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

gamma-Chlordane

1317981-MSD1 Source: SB73837-07

The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

gamma-Chlordane

Samples:

SB73837-01 SED-BBUS-1-072513-1

Difference between the two GC columns is greater than 40%.

Chlordane [2C]

gamma-Chlordane [2C]

SB73837-04 *SW-BBUS-2-072513-1*

Difference between the two GC columns is greater than 40%.

Dieldrin [2C]

SB73837-07 *SED-BBUS-3-072513-1*

Difference between the two GC columns is greater than 40%.

alpha-Chlordane gamma-Chlordane [2C]

SW846 8270D SIM

Spikes:

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Fluoranthene

1317842-MSD2 Source: SB73837-08

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Fluoranthene

M1295-04AMS Source: SB73837-07

SW846 8270D SIM

Spikes:

M1295-04AMS Source: SB73837-07

Spike recovery falls outside of the control limit

2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene

Dibenzo(a,h)anthracene

Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene

Phenanthrene

Pyrene

M1295-04AMSD Source: SB73837-07

Relative percent difference is outside of the control limit

Acenaphthylene

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene

Dibenzo(a,h)anthracene

Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene

Naphthalene

Phenanthrene

Pyrene

Spike recovery falls outside of the control limit

Anthracene

Benzo(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Chrysene

Fluoranthene

Indeno(1,2,3-cd)pyrene

Phenanthrene

Pyrene

Samples:

S309150-CCV1

SW846 8270D SIM

Samples:

S309150-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Dibenzo (a,h) anthracene (23.3%)

This affected the following samples:

1317842-BLK2 1317842-BS2 1317842-BSD2 SW-BBUS-1-072513-1 SW-BBUS-2-072513-1

Sample Acceptance Check Form

Chent.	AECOM ENVIRONMENT - ROCKY MIN, CI			
Project:	Greenwich HS - Greenwich, CT / 60225155			
Work Order:	SB73837			
Sample(s) received on:	7/25/2013			
Received by:	Jessica Hoffman			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
1. Were custody se	als present?		\checkmark	
2. Were custody se	als intact?			\checkmark
3. Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	$\overline{\checkmark}$		
4. Were samples co	oled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		✓	
6. Were sample con	ntainers received intact?	$\overline{\checkmark}$		

7. Were samples properly labeled (labels affixed to sample containers and include sample ID, site

9. Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name,

preservation type, sample matrix and any special remarks concerning the sample?

location, and/or project number and the collection date)?

8. Were samples accompanied by a Chain of Custody document?

10. Did sample container labels agree with Chain of Custody document?

11. Were samples received within method-specific holding times?

Received

25-Jul-13

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
Organochlo	rine Pesticides												
	by method SW846 3545A												
319-84-6	alpha-BHC	< 6.04		μg/kg dry	6.04	0.918	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317981	Χ
319-85-7	beta-BHC	< 6.04		μg/kg dry	6.04	1.02	1			"	"		Χ
319-86-8	delta-BHC	< 6.04		μg/kg dry	6.04	1.03	1			"	"		Х
58-89-9	gamma-BHC (Lindane)	< 3.63		μg/kg dry	3.63	0.979	1			"	"		Х
76-44-8	Heptachlor	< 6.04		μg/kg dry	6.04	0.906	1				"		Χ
309-00-2	Aldrin	< 6.04		μg/kg dry	6.04	0.967	1			"	"		Χ
1024-57-3	Heptachlor epoxide	< 6.04		μg/kg dry	6.04	1.06	1			"	"		Χ
959-98-8	Endosulfan I	< 6.04		μg/kg dry	6.04	1.06	1	н		"	"		Χ
60-57-1	Dieldrin	< 6.04		μg/kg dry	6.04	1.00	1				"		Χ
72-55-9	4,4'-DDE (p,p')	23.4		μg/kg dry	6.04	1.03	1				"		Χ
72-20-8	Endrin	< 9.67		μg/kg dry	9.67	1.20	1				"		Χ
33213-65-9	Endosulfan II	< 9.67		μg/kg dry	9.67	1.04	1			"	"		Χ
72-54-8	4,4'-DDD (p,p')	< 9.67		μg/kg dry	9.67	1.04	1				"		Χ
1031-07-8	Endosulfan sulfate	< 9.67		μg/kg dry	9.67	1.12	1	н			"		Χ
50-29-3	4,4'-DDT (p,p')	20.1		μg/kg dry	9.67	1.02	1				"		Х
72-43-5	Methoxychlor	< 9.67		μg/kg dry	9.67	0.810	1						Х
53494-70-5	Endrin ketone	< 9.67		μg/kg dry	9.67	1.09	1				"		Χ
7421-93-4	Endrin aldehyde	< 9.67		μg/kg dry	9.67	1.08	1				"		Χ
5103-71-9	alpha-Chlordane	17.3		μg/kg dry	6.04	1.09	1	н			"		Χ
5566-34-7	gamma-Chlordane [2C]	< 6.04	Р	μg/kg dry	6.04	1.08	1				"		Χ
8001-35-2	Toxaphene	< 121		μg/kg dry	121	13.6	1				"		Х
57-74-9	Chlordane [2C]	78.5	Р	μg/kg dry	24.2	3.60	1						Х
15972-60-8	Alachlor	< 6.04		μg/kg dry	6.04	1.40	1				"		,,
Currogata rac				13 3 . 7									
Surrogate red		101			00.45	20.0/							
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	101			30-15								
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	86			30-15	0 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr)	82			30-15	0 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	70			30-15	0 %					"		
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.8		μg/kg dry	23.8	17.7	1	SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792	Х
11104-28-2	Aroclor-1221	< 23.8		μg/kg dry	23.8	21.4	1			"	"		Х
11141-16-5	Aroclor-1232	< 23.8		μg/kg dry	23.8	15.3	1				"		Х
53469-21-9	Aroclor-1242	< 23.8		μg/kg dry	23.8	14.3	1				"		Х
12672-29-6	Aroclor-1248	< 23.8		μg/kg dry	23.8	12.4	1				"		Х
11097-69-1	Aroclor-1254	< 23.8		μg/kg dry μg/kg dry	23.8	19.8	1				"		X
11096-82-5	Aroclor-1260	< 23.8		μg/kg dry μg/kg dry	23.8	14.7	1				,,		X
37324-23-5											"		
	Aroclor-1262	< 23.8		μg/kg dry	23.8	22.1	1				"		X
11100-14-4	Aroclor-1268	< 23.8		μg/kg dry	23.8	9.80	1		-	-			Х
Surrogate red													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		n .			"		

Sample Identification			Client Project #			Matrix	Colle	Collection Date/Time			Received		
	US-1-072513-1			6022			Sedimen		5-Jul-13 09:		25-Jul-13		
SB73837	-01												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	60 %		SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792	
2051-24-3	Decachlorobiphenyl (Sr)	70			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	140			30-15	50 %		II.		н	"		
Гotal Met	als by EPA 6000/7000 Series	Methods											
440-22-4	Silver	< 1.78		mg/kg dry	1.78	0.513	1	SW846 6010C	30-Jul-13	31-Jul-13	EDT	1318009	Х
440-38-2	Arsenic	4.48		mg/kg dry	1.78	0.776	1				"		Х
440-39-3	Barium	66.6		mg/kg dry	1.19	0.382	1				"		Х
440-41-7	Beryllium	< 0.593		mg/kg dry	0.593	0.179	1				"		Х
440-43-9	Cadmium	< 0.593		mg/kg dry	0.593	0.174	1				"		Х
440-47-3	Chromium	19.2		mg/kg dry	1.19	0.256	1	п			"		>
140-50-8	Copper	16.2		mg/kg dry	1.19	0.457	1				"		>
439-97-6	Mercury	< 0.0329		mg/kg dry	0.0329	0.0017	1	SW846 7471B		31-Jul-13	JLM	1318010	>
440-02-0	Nickel	15.1		mg/kg dry	1.19	0.344	1	SW846 6010C		31-Jul-13	EDT	1318009	>
439-92-1	Lead	11.5		mg/kg dry	1.78	0.656	1	н					>
140-36-0	Antimony	< 5.93		mg/kg dry	5.93	1.09	1	н)
782-49-2	Selenium	< 1.78		mg/kg dry	1.78	0.510	1				")
140-28-0	Thallium	< 3.56		mg/kg dry	3.56	1.01	1				")
440-62-2	Vanadium	24.9		mg/kg dry	1.78	0.551	1				")
440-66-6	Zinc	33.4		mg/kg dry	1.19	0.521	1				"		Х
General C	Chemistry Parameters			3 3 ,									
	% Solids	81.5		%			1	SM2540 G Mod.	26-Jul-13	26-Jul-13	DT	1317764	
Subcontra	acted Analyses												
	erformed by Spectrum Analytic	cal. Inc Nort	h Kingstowr	ı. RI									
indiysis p	Percent Moisture	16	111118510111	PCT	10	0.050	1	ASTM D2216		29-Jul-13	PH-01	R75557	
								PMOIST					
	ed Analyses												
Prepared	by method SW3545A												
Inalysis p	erformed by Spectrum Analytic	cal, Inc Nort	h Kingstown	ı, RI									
1-20-3	Naphthalene	< 76		ug/Kg	76	23	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
1-57-6	2-Methylnaphthalene	< 76		ug/Kg	76	23	1	п		"	"		
08-96-8	Acenaphthylene	< 76		ug/Kg	76	20	1				"		
3-32-9	Acenaphthene	< 76		ug/Kg	76	21	1				"		
6-73-7	Fluorene	< 76		ug/Kg	76	20	1				"		
5-01-8	Phenanthrene	< 76		ug/Kg	76	23	1				"		
20-12-7	Anthracene	< 76		ug/Kg	76	22	1	и			"		
06-44-0	Fluoranthene	< 76		ug/Kg	76	35	1	и			"		
29-00-0	Pyrene	< 76		ug/Kg	76	25	1	п			"		
6-55-3	Benzo(a)anthracene	< 76		ug/Kg	76	30	1	п			"		
18-01-9	Chrysene	< 76		ug/Kg	76	51	1	и			"		
05-99-2	Benzo(b)fluoranthene	< 76		ug/Kg	76	37	1	п			"		
07-08-9	Benzo(k)fluoranthene	< 76		ug/Kg	76	30	1				"		
0-32-8	Benzo(a)pyrene	< 76		ug/Kg	76	22	1	и			"		
		< 76											
93-39-5	Indeno(1,2,3-cd)pyrene	~ 10		ug/Kg	76	25	1	•	-	-			

Sample Identification SED-BBUS-1-072513-1 SB73837-01			<u>Client Project #</u> 60225155			Matrix Sedimen	Collection Date/Time 25-Jul-13 09:00			Received 25-Jul-13			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
	ed Analyses by method SW3545A												
Analysis pe	erformed by Spectrum Ana	lytical, Inc No	rth Kingstown	, RI									
191-24-2	Benzo(g,h,i)perylene	< 76		ug/Kg	76	25	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
Surrogate rec	coveries:												
205440-82-0	Benzo(e)pyrene-d12	106			32-15	53 %				ıı	"		

-	<u>dentification</u> US-1-072513-1 I-02		<u>Client Project #</u> 60225155				Matrix Surface Wa		Collection Date/Time 25-Jul-13 09:00			Received 25-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolat	tile Organic Compounds by	GCMS												
SVOCs by S	SIM													
Prepared	by method SW846 3510C	<u>}</u>												
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	29-Jul-13	02-Aug-13	ML/	1317842	Χ	
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1			н	"		Χ	
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1			н	"			
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.013	1			н	"		Χ	
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.036	1			н	"		Χ	
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.036	1				"		Χ	
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.031	1	п		н	"		Χ	
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.026	1	п		н	"		Χ	
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.026	1	п			"		Χ	
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.022	1				"		Χ	
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.030	1				"		Χ	
206-44-0	Fluoranthene	0.084		μg/l	0.050	0.017	1				"		Χ	
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1						Χ	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.029	1			н			Χ	
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.008	1	п		н				
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.016	1	п			"		Χ	
85-01-8	Phenanthrene	0.057		μg/l	0.050	0.019	1	п			"		Χ	
129-00-0	Pyrene	0.064		μg/l	0.050	0.017	1	п			"		Χ	
Surrogate red	coveries:													
321-60-8	2-Fluorobiphenyl	85			30-13	0 %				п				
1718-51-0	Terphenyl-dl4	85			30-13									
205440-82-0	Benzo (e) pyrene-d12	94			30-13									
	tile Organic Compounds by				00 10	• /•								
Organochlo	rine Pesticides													
<u>Prepared</u> 319-84-6	l by method SW846 3510C alpha-BHC	< 0.002		ug/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Х	
319-85-7	beta-BHC	< 0.002		μg/l			1	30040 00010	30-3ul-13	31-341-13	"	1311911	X	
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.001	•				"		X	
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.001	1						X	
		< 0.002		μg/l	0.002	0.001								
76-44-8	Heptachlor			μg/l	0.002	0.001	1						X	
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.001	1						X	
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.001	1						X	
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.001	1						Х	
	Dioldrin	0.031		μg/l	0.002	0.002	1		•				Χ	
	Dieldrin						4	II .			"		Χ	
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1							
72-55-9 72-20-8	4,4'-DDE (p,p') Endrin	< 0.002 < 0.004		µg/l µg/l	0.004	0.002	1	и			"		Х	
72-55-9 72-20-8 33213-65-9	4,4'-DDE (p,p') Endrin Endosulfan II	< 0.002 < 0.004 < 0.004		µg/I µg/I µg/I	0.004 0.004	0.002 0.002	1				"		Х	
72-55-9 72-20-8 33213-65-9 72-54-8	4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p')	< 0.002 < 0.004 < 0.004 < 0.004		µg/l µg/l	0.004	0.002	1				"	:	X X	
72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8	4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate	< 0.002 < 0.004 < 0.004 < 0.004 < 0.004		hg/l hg/l hg/l	0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002	1				" "		X X X	
72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8	4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p')	< 0.002 < 0.004 < 0.004 < 0.004		µg/I µg/I µg/I	0.004 0.004 0.004	0.002 0.002 0.002	1 1 1				" " "	:	X X	
72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3	4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate	< 0.002 < 0.004 < 0.004 < 0.004 < 0.004		hg/l hg/l hg/l	0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002	1 1 1				" "		X X X	
60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5 53494-70-5	4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	< 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		hā\] hā\] hā\] hā\]	0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002	1 1 1 1				" " "		X X X	
72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5	4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor	< 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		hāyl hāyl hāyl hāyl hāyl	0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1				" " " "		X X X X	

Client Project # 60225155

Matrix Surface Water Collection Date/Time 25-Jul-13 09:00 Received 25-Jul-13

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Organochlo	rine Pesticides												
Prepared	by method SW846 3510C												
5566-34-7	gamma-Chlordane	< 0.002		μg/I	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Χ
8001-35-2	Toxaphene	< 0.051		μg/l	0.051	0.047	1			п	"		Χ
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.006	1			ıı	"		Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	ı			"		
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	77			30-15	0 %		н		u	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	70			30-15	0 %		н		u	"		
2051-24-3	Decachlorobiphenyl (Sr)	44			30-15	i0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	33			30-15	60 %		п		н	"		
Total Met	tals by EPA 200/6000 Series I	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			BEL	1317737	
Total Met	tals by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0018	1	н			"		Χ
7440-39-3	Barium	0.0958		mg/l	0.0050	0.0007	1				"		Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0002	1				"		Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0008	1			п	"		Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0009	1			ıı	"		Χ
7440-50-8	Copper	0.0072		mg/l	0.0050	0.0011	1			п	"		Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0007	1			п	"		Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0020	1			п	"		Χ
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0014	1			ıı	"		Χ
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0030	1				"		Χ
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0029	1				"		Χ
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0009	1			ı	"		Χ
7440-66-6	Zinc	0.0200		mg/l	0.0050	0.0020	1				"		Χ
Total Met	tals by EPA 200 Series Metho	ods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	30-Jul-13	31-Jul-13	JLM	1318008	Χ

30-150 %

10.3

1

Χ

24.9

μg/kg dry

11100-14-4

Surrogate recoveries:

Aroclor-1268

(Sr)

4,4-DB-Octafluorobiphenyl

< 24.9

90

Sample Identification			Client Project #			Matrix	Colle	ection Date/Time		Red				
	US-2-072513-1			6022			Sedimen		25-Jul-13 10:00			25-Jul-13		
SB73837	-03													
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer	
Semivolat	ile Organic Compounds by C	GC												
	ated Biphenyls													
Prepared	by method SW846 3540C													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	60 %		SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792		
2051-24-3	Decachlorobiphenyl (Sr)	80			30-15	0 %				н	"			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		ı		п	"			
Γotal Met	als by EPA 6000/7000 Series	Methods												
440-22-4	Silver	< 1.71		mg/kg dry	1.71	0.492	1	SW846 6010C	30-Jul-13	31-Jul-13	EDT	1318009	Х	
440-38-2	Arsenic	< 1.71		mg/kg dry	1.71	0.744	1	п			"		Х	
440-39-3	Barium	94.0		mg/kg dry	1.14	0.367	1				"		Х	
440-41-7	Beryllium	< 0.569		mg/kg dry	0.569	0.172	1			н	"		Х	
440-43-9	Cadmium	< 0.569		mg/kg dry	0.569	0.167	1				"		Х	
440-47-3	Chromium	25.9		mg/kg dry	1.14	0.246	1	п			"		Х	
440-50-8	Copper	15.8		mg/kg dry	1.14	0.438	1	п			"		X	
439-97-6	Mercury	< 0.0356		mg/kg dry	0.0356	0.0018	1	SW846 7471B		31-Jul-13	JLM	1318010	X	
440-02-0	Nickel	14.6		mg/kg dry	1.14	0.330	1	SW846 6010C		31-Jul-13	EDT	1318009	Х	
439-92-1	Lead	4.63		mg/kg dry	1.71	0.629	1	н		п			Х	
440-36-0	Antimony	< 5.69		mg/kg dry	5.69	1.05	1	н		п			>	
782-49-2	Selenium	< 1.71		mg/kg dry	1.71	0.489	1				"		>	
440-28-0	Thallium	< 3.41		mg/kg dry	3.41	0.964	1				"		>	
440-62-2	Vanadium	30.5		mg/kg dry	1.71	0.528	1				"		>	
440-66-6	Zinc	41.0		mg/kg dry	1.14	0.500	1				"		Х	
General C	Chemistry Parameters													
	% Solids	75.4		%			1	SM2540 G Mod.	26-Jul-13	26-Jul-13	DT	1317764		
Subcontra	acted Analyses													
	erformed by Spectrum Analytic	cal. Inc Norti	n Kingstowi	ı. RI										
	Percent Moisture	16		PCT	10	0.050	1	ASTM D2216		29-Jul-13	PH-01	R75557		
								PMOIST						
	ed Analyses													
	by method SW3545A													
	erformed by Spectrum Analytic		h Kingstowi	ı, RI										
1-20-3	Naphthalene	< 77		ug/Kg	77	23	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963		
1-57-6	2-Methylnaphthalene	< 77		ug/Kg	77	23	1				"			
08-96-8	Acenaphthylene	< 77		ug/Kg	77	21	1	"			"			
3-32-9	Acenaphthene	< 77		ug/Kg	77	21	1	"		"	"			
6-73-7	Fluorene	< 77		ug/Kg	77	20	1	н			"			
5-01-8	Phenanthrene	< 77		ug/Kg	77	23	1	n .			"			
20-12-7	Anthracene	< 77		ug/Kg	77	22	1				"			
06-44-0	Fluoranthene	< 77		ug/Kg	77	35	1			н	"			
29-00-0	Pyrene	< 77		ug/Kg	77	26	1	II .			"			
6-55-3	Benzo(a)anthracene	< 77		ug/Kg	77	30	1	п			"			
18-01-9	Chrysene	< 77		ug/Kg	77	52	1	п		н	"			
05-99-2	Benzo(b)fluoranthene	< 77		ug/Kg	77	38	1	и			"			
07-08-9	Benzo(k)fluoranthene	< 77		ug/Kg	77	30	1	и			"			
60-32-8	Benzo(a)pyrene	< 77		ug/Kg	77	22	1	п			"			
93-39-5	Indeno(1,2,3-cd)pyrene	< 77		ug/Kg	77	26	1				"			
i3-70-3	Dibenzo(a,h)anthracene	< 77		ug/Kg	77	26	1							

Sample Identification SED-BBUS-2-072513-1 SB73837-03		<u>Client Project #</u> 60225155			Matrix Sediment		Collection Date/Time 25-Jul-13 10:00		Received 25-Jul-13				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontracte Prepared	ed Analyses by method SW3545A												
Analysis pe	erformed by Spectrum Anai	lytical, Inc Nor	th Kingstown	, RI									
191-24-2	Benzo(g,h,i)perylene	< 77		ug/Kg	77	26	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
Surrogate reco	overies:												
205440-82-0	Benzo(e)pyrene-d12	89.2			32-15	3 %				п			

	dentification			Client I	Project #		<u>Matrix</u>	Colle	ection Date	/Time	Re	ceived	
SW-вв 0 SB73837	JS- 2-072513-1 -04			6022	25155		Surface W	ater 25	5-Jul-13 10:	:00	25-	Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cei
Semivolat	ile Organic Compounds by	GCMS											
SVOCs by S													
Prepared	by method SW846 3510C	<u> </u>											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	29-Jul-13	02-Aug-13	ML/	1317842	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1			п	"		Х
00-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1			п	"		
20-12-7	Anthracene	< 0.050		μg/l	0.050	0.013	1			"	"		>
6-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.036	1			"	"		>
0-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.036	1			"	"		>
05-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.031	1			п	"		>
91-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.026	1			п	"		>
07-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.026	1			"	"		>
18-01-9	Chrysene	< 0.050		μg/l	0.050	0.022	1			"	"		>
3-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.030	1				"		>
06-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.017	1			п	")
6-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1			п	")
93-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.029	1			ıı	")
1-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.008	1				"		
1-20-3	Naphthalene	< 0.050		μg/l	0.050	0.016	1				")
5-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.019	1				"		>
29-00-0	Pyrene	< 0.050		μg/l	0.050	0.017	1				"		>
Surrogate red	coveries:												
21-60-8	2-Fluorobiphenyl	93			30-13	0 %				п	•		
718-51-0	Terphenyl-dl4	95			30-13	0 %				п	"		
05440-82-0	Benzo (e) pyrene-d12	90			30-13	0 %		п			"		
Semivolat	ile Organic Compounds by	GC											
Organochlo	rine Pesticides												
Prepared	by method SW846 3510C	<u> </u>											
19-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	>
19-85-7	beta-BHC	< 0.002		μg/l	0.002	0.001	1	п		ıı	"		>
19-86-8	delta-BHC	< 0.002		μg/l	0.002	0.001	1	п			")
8-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.001	1				"		>
6-44-8	Heptachlor	< 0.002		μg/l	0.002	0.001	1				")
09-00-2	Aldrin	< 0.002		μg/l	0.002	0.001	1			и	")
024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1			н	")
59-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	п			")
0-57-1	Dieldrin [2C]	0.018	Р	μg/l	0.002	0.002	1	н			")
2-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1			п	")
2-20-8	Endrin	< 0.005		μg/l	0.005	0.002	1			п)
3213-65-9	Endosulfan II	< 0.005		μg/l	0.005	0.002	1				")
2-54-8	4,4'-DDD (p,p')	< 0.005		μg/l	0.005	0.002	1				"		>
031-07-8	Endosulfan sulfate	< 0.005		μg/l	0.005	0.002	1				")
0-29-3	4,4'-DDT (p,p')	< 0.005		μg/l	0.005	0.002	1				")
2-43-5	Methoxychlor	< 0.005		μg/l	0.005	0.002	1)
3494-70-5	Endrin ketone	< 0.005		μg/l	0.005	0.002	1						<i>,</i>
421-93-4	Endrin aldehyde	< 0.005			0.005	0.002	1				"		^ X
	•			μg/l									X
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	н			"		

-	<u>dentification</u> (S-2-072513-1 -04			<u>Project #</u> 25155		<u>Matrix</u> Surface Wa		ection Date 5-Jul-13 10:			ceived Jul-13	
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Organochlo	ile Organic Compounds by C rine Pesticides by method SW846 3510C	GC										
5566-34-7	gamma-Chlordane	< 0.002	μg/l	0.002	0.002	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Х
8001-35-2	Toxaphene	< 0.058	μg/l	0.058	0.054	1				"		Χ
57-74-9	Chlordane	< 0.008	μg/l	0.008	0.007	1	ı			"		Х
15972-60-8	Alachlor	< 0.002	μg/l	0.002	0.002	1				"		
Surrogate red	coveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	88		30-15	50 %		н		и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	81		30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	51		30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	38		30-15	50 %		н		и	"		
Total Met	als by EPA 200/6000 Series M	Methods										
	Preservation	Field Preserved	N/A			1	EPA 200/6000 methods			BEL	1317737	
Total Met	als by EPA 6000/7000 Series	Methods										
7440-22-4	Silver	< 0.0050	mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Χ
7440-38-2	Arsenic	< 0.0040	mg/l	0.0040	0.0018	1				"		Χ
7440-39-3	Barium	0.0858	mg/l	0.0050	0.0007	1				"		Χ
7440-41-7	Beryllium	< 0.0020	mg/l	0.0020	0.0002	1				"		Χ
7440-43-9	Cadmium	< 0.0025	mg/l	0.0025	0.0008	1				"		Χ
7440-47-3	Chromium	< 0.0050	mg/l	0.0050	0.0009	1	ı			"		Χ
7440-50-8	Copper	< 0.0050	mg/l	0.0050	0.0011	1	ı			"		Χ
7440-02-0	Nickel	< 0.0050	mg/l	0.0050	0.0007	1				"		Χ

0.0075

0.0060

0.0150

0.0050

0.0050

0.0050

0.00020

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

0.0020

0.0014

0.0030

0.0029

0.0009

0.0020

0.00008

EPA 245.1/7470A

30-Jul-13

31-Jul-13

JLM

1318008

Χ

Χ

Χ

Χ

Χ

Χ

7439-92-1

7440-36-0

7782-49-2

7440-28-0

7440-62-2

7440-66-6

7439-97-6

Lead

Antimony

Selenium

Thallium

Vanadium

Total Metals by EPA 200 Series Methods

Zinc

Mercury

< 0.0075

< 0.0060

< 0.0150

< 0.0050

< 0.0050

< 0.00020

0.0117

30-150 %

25.8

25.8

25.8

25.8

25.8

13.4

21.5

16.0

24.1

10.7

1

1

1

1

Х

Χ

Χ

Χ

Χ

μg/kg dry

μg/kg dry

μg/kg dry

μg/kg dry

μg/kg dry

11097-69-1

11096-82-5

37324-23-5

11100-14-4

Surrogate recoveries: 10386-84-2

Aroclor-1254

Aroclor-1260

Aroclor-1262

Aroclor-1268

(Sr)

4,4-DB-Octafluorobiphenyl

< 25.8

< 25.8

< 25.8

< 25.8

95

-	dentification_			Client P	roject#		Matrix	Colle	ection Date	/Time	Re	ceived	
	US-2-072513-2			6022			Sedimen		5-Jul-13 10:			Jul-13	
SB73837	-05												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792	
2051-24-3	Decachlorobiphenyl (Sr)	80			30-15	0 %				н	•		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	0 %		II.			"		
Total Met	als by EPA 6000/7000 Series	Methods											
440-22-4	Silver	< 1.72		mg/kg dry	1.72	0.496	1	SW846 6010C	30-Jul-13	31-Jul-13	EDT	1318009	Х
440-38-2	Arsenic	1.89		mg/kg dry	1.72	0.751	1	п			"		Х
440-39-3	Barium	93.8		mg/kg dry	1.15	0.370	1	п			"		Х
440-41-7	Beryllium	< 0.574		mg/kg dry	0.574	0.173	1			н	"		Х
440-43-9	Cadmium	< 0.574		mg/kg dry	0.574	0.169	1			н	"		X
440-47-3	Chromium	22.6		mg/kg dry	1.15	0.248	1				"		Х
140-50-8	Copper	19.2		mg/kg dry	1.15	0.442	1				"		>
439-97-6	Mercury	< 0.0349		mg/kg dry	0.0349	0.0018	1	SW846 7471B		31-Jul-13	JLM	1318010	>
440-02-0	Nickel	14.8		mg/kg dry	1.15	0.333	1	SW846 6010C		31-Jul-13	EDT	1318009	>
439-92-1	Lead	4.65		mg/kg dry	1.72	0.635	1	н		п			>
140-36-0	Antimony	< 5.74		mg/kg dry	5.74	1.06	1	н		п)
782-49-2	Selenium	< 1.72		mg/kg dry	1.72	0.494	1				")
140-28-0	Thallium	< 3.45		mg/kg dry	3.45	0.973	1)
140-62-2	Vanadium	26.3		mg/kg dry	1.72	0.533	1				")
440-66-6	Zinc	35.2		mg/kg dry	1.15	0.504	1				"		>
General C	Chemistry Parameters			3 3 7									
	% Solids	77.4		%			1	SM2540 G Mod.	26-Jul-13	26-Jul-13	DT	1317764	
Subcontra	acted Analyses												
	erformed by Spectrum Analytic	cal Inc - Nort	h Kingstowi	ı RI									
indiysis p	Percent Moisture	16		PCT	10	0.050	1	ASTM D2216		29-Jul-13	PH-01	R75557	
								PMOIST					
	ed Analyses												
repared	by method SW3545A												
Inalysis p	erformed by Spectrum Analytic	cal, Inc Nort	h Kingstowi	ı, RI									
1-20-3	Naphthalene	< 78		ug/Kg	78	24	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
1-57-6	2-Methylnaphthalene	< 78		ug/Kg	78	24	1	п		н	"		
08-96-8	Acenaphthylene	< 78		ug/Kg	78	21	1				"		
3-32-9	Acenaphthene	< 78		ug/Kg	78	21	1				"		
6-73-7	Fluorene	< 78		ug/Kg	78	21	1				"		
5-01-8	Phenanthrene	< 78		ug/Kg	78	23	1			н	"		
20-12-7	Anthracene	< 78		ug/Kg	78	23	1	и			"		
06-44-0	Fluoranthene	< 78		ug/Kg	78	36	1	и			"		
29-00-0	Pyrene	< 78		ug/Kg	78	26	1	п			"		
6-55-3	Benzo(a)anthracene	< 78		ug/Kg	78	31	1	п			"		
18-01-9	Chrysene	< 78		ug/Kg	78	52	1	и			"		
05-99-2	Benzo(b)fluoranthene	< 78		ug/Kg	78	38	1	п			"		
07-08-9	Benzo(k)fluoranthene	< 78		ug/Kg	78	31	1				"		
0-32-8	Benzo(a)pyrene	< 78		ug/Kg	78	23	1	и			"		
	Indeno(1,2,3-cd)pyrene	< 78		ug/Kg	78	26	1				"		
93-39-5						20							

	dentification US-2-072513-2 -05				<u>Project #</u> 25155		Matrix Sedimen		ection Date 5-Jul-13 10			Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
	ed Analyses by method SW3545A												
Analysis pe	erformed by Spectrum Ana	lytical, Inc Nor	th Kingstown	, RI									
191-24-2	Benzo(g,h,i)perylene	< 78		ug/Kg	78	26	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
Surrogate rec	coveries:												
205440-82-0	Benzo(e)pyrene-d12	91.0			32-15	3 %		п		ıı	"		

-	dentification_			Client F	Project #		Matrix	Colle	ection Date	/Time	Re	ceived	
	JS-2-072513-2				5155		Surface W		5-Jul-13 10:			Jul-13	
SB73837	7-06												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	tile Organic Compounds by	GCMS											
SVOCs by S													
	by method SW846 3510C	="											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	29-Jul-13	02-Aug-13	ML/	1317842	
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1				"		Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1				"		
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.013	1			"	"		Χ
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.036	1						Х
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.036	1			"	"		Х
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.031	1				"		Х
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.026	1				"		Х
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.026	1				"		Х
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.022	1	"			"		Х
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.030	1				"		Х
206-44-0	Fluoranthene	0.097		μg/l	0.050	0.017	1				"		Х
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1				"		Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.029	1				"		Х
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.008	1	H		н	"		
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.016	1	H		н	"		Χ
85-01-8	Phenanthrene	0.077		μg/l	0.050	0.019	1	H		н	"		Χ
129-00-0	Pyrene	0.075		μg/l	0.050	0.017	1			"	"		Х
Surrogate rec	coveries:												
321-60-8	2-Fluorobiphenyl	68			30-13	0 %		н			"		
1718-51-0	Terphenyl-dl4	91			30-13	0 %		н			"		
205440-82-0	Benzo (e) pyrene-d12	86			30-13	0 %		н			"		
Semivolat	tile Organic Compounds by	GC											
_	rine Pesticides												
<u>Prepared</u> 319-84-6	by method SW846 3510C			/1	0.000	0.001		CW046 0004B	00 Jul 10	01 1.110	TO	1017077	v
	alpha-BHC	< 0.002		μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG "	1317977	X
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.001	1						X
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.001	1				"		X
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.001	1						X
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.001	1						Х
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.001	1				"		Х
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.001	1				"		Х
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.001	1						Х
60-57-1	Dieldrin [2C]	0.003		μg/l	0.002	0.001	1		•		"		Х
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1			"	"		Х
72-20-8	Endrin	< 0.004		μg/l	0.004	0.002	1	"			"		Х
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1				"		Х
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1				"		Х
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1			н	"		Χ
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1			н	"		Х
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.002	1				"		Χ
72 40 0													Χ
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.002	1						^
	Endrin ketone Endrin aldehyde	< 0.004 < 0.004		μg/l μg/l	0.004 0.004	0.002	1	и			"		Х

SW-BBU SB73837				<u>Project #</u> 25155		<u>Matrix</u> Surface Wa	ater 2:	ection Date 5-Jul-13 10	:00	25-	ceived Jul-13	
CAS No.	Analyte(s)	Result Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC										
	rine Pesticides by method SW846 3510C											
5566-34-7	gamma-Chlordane	< 0.002	μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Χ
8001-35-2	Toxaphene	< 0.052	μg/l	0.052	0.048	1				"		Χ
57-74-9	Chlordane	< 0.007	μg/l	0.007	0.006	1	11			"		Χ
15972-60-8	Alachlor	< 0.002	μg/l	0.002	0.002	1				"		
Surrogate red	coveries:											
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85		30-15	50 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	74		30-15	50 %		и		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	43		30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	35		30-15	50 %		и	н	ı	"		
Total Met	als by EPA 200/6000 Series I	Methods										
	Preservation	Field Preserved	N/A			1	EPA 200/6000 methods			BEL	1317737	
Total Met	als by EPA 6000/7000 Series	Methods										
7440-22-4	Silver	< 0.0050	mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Χ
7440-38-2	Arsenic	< 0.0040	mg/l	0.0040	0.0018	1				"		Χ
7440-39-3	Barium	0.122	mg/l	0.0050	0.0007	1				"		Χ
7440-41-7	Beryllium	< 0.0020	mg/l	0.0020	0.0002	1				"		Χ
7440-43-9	Cadmium	< 0.0025	mg/l	0.0025	0.0008	1				"		Χ
7440-47-3	Chromium	< 0.0050	mg/l	0.0050	0.0009	1				"		Χ
7440-50-8	Copper	0.0086	mg/l	0.0050	0.0011	1				"		Χ
7440-02-0	Nickel	< 0.0050	mg/l	0.0050	0.0007	1			"	"		Χ

0.0075

0.0060

0.0150

0.0050

0.0050

0.0050

0.00020

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

0.0020

0.0014

0.0030

0.0029

0.0009

0.0020

0.00008

EPA 245.1/7470A

30-Jul-13

31-Jul-13

JLM

1318008

Χ

Χ

Χ

Χ

Χ

Χ

7439-92-1

7440-36-0

7782-49-2

7440-28-0

7440-62-2

7440-66-6

7439-97-6

Lead

Antimony

Selenium

Thallium

Vanadium

Total Metals by EPA 200 Series Methods

Zinc

Mercury

< 0.0075

< 0.0060

< 0.0150

< 0.0050

< 0.0050

< 0.00020

0.0265

30-150 %

20.3

20.3

18.9

8.39

1

1

Χ

Χ

μg/kg dry

μg/kg dry

37324-23-5

11100-14-4

Surrogate recoveries:

Aroclor-1262

Aroclor-1268

(Sr)

4,4-DB-Octafluorobiphenyl

< 20.3

< 20.3

90

Sample Id	lentification_			Client P	roiect#		Matrix	Colle	ection Date	/Time	Re	ceived	
SED-BBU	US-3-072513-1			6022	-		Sediment		5-Jul-13 10:			Jul-13	
SB73837-	-07			0022	3133		Scamicin	. 2.)-Jui-13 10.	.50	25-	Jui-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC .											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	135			30-15	0 %		SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792	
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	60 %				п	"		
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 1.66		mg/kg dry	1.66	0.478	1	SW846 6010C	30-Jul-13	31-Jul-13	EDT	1318009	Χ
7440-38-2	Arsenic	2.09		mg/kg dry	1.66	0.724	1				"		Χ
7440-39-3	Barium	40.1		mg/kg dry	1.11	0.357	1				•		Χ
7440-41-7	Beryllium	< 0.554		mg/kg dry	0.554	0.167	1				"		Χ
7440-43-9	Cadmium	< 0.554		mg/kg dry	0.554	0.163	1				"		Х
7440-47-3	Chromium	13.1		mg/kg dry	1.11	0.239	1				"		Х
7440-50-8	Copper	14.5		mg/kg dry	1.11	0.426	1				"		Х
7439-97-6	Mercury	< 0.0300		mg/kg dry	0.0300	0.0015	1	SW846 7471B		31-Jul-13	JLM	1318010	Х
7440-02-0	Nickel	14.4		mg/kg dry	1.11	0.321	1	SW846 6010C		31-Jul-13	EDT	1318009	Х
7439-92-1	Lead	50.9		mg/kg dry	1.66	0.612	1				"		Х
7440-36-0	Antimony	< 5.54		mg/kg dry	5.54	1.02	1				"		Х
7782-49-2	Selenium	< 1.66		mg/kg dry	1.66	0.476	1				"		Х
7440-28-0	Thallium	< 3.32		mg/kg dry	3.32	0.938	1				"		Х
7440-62-2	Vanadium	21.0		mg/kg dry	1.66	0.514	1				"		Х
7440-66-6	Zinc	33.9		mg/kg dry	1.11	0.486	1				"		Х
General C	hemistry Parameters			3 3 7									
ouncial c	% Solids	89.6		%			1	SM2540 G Mod.	26-Jul-13	26-Jul-13	DT	1317764	
Subcontra	cted Analyses			,**			·	5 <u>2</u> 5 15 G5G.	20 00. 10	20 000		.017701	
	erformed by Spectrum Analytic	cal Inc. North	k Kingstow	, DI									
Analysis pe	Percent Moisture	15	i Kingsiowi	PCT	10	0.050	1	ASTM D2216		29-Jul-13	PH-01	R75557	
	r ercent moisture	10		101	10	0.030		PMOIST		29-00F13	111-01	11/333/	
Subcontracte	ed Analyses												
Prepared	by method SW3545A												
Analysis pe	erformed by Spectrum Analytic	cal, Inc North	h Kingstowi	ı, RI									
91-20-3	Naphthalene	< 76		ug/Kg	76	23	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
91-57-6	2-Methylnaphthalene	< 76		ug/Kg	76	23	1				"		
208-96-8	Acenaphthylene	< 76		ug/Kg	76	20	1				"		
83-32-9	Acenaphthene	< 76		ug/Kg	76	21	1				"		
86-73-7	Fluorene	< 76		ug/Kg	76	20	1				"		
85-01-8	Phenanthrene	< 76		ug/Kg	76	23	1				"		
120-12-7	Anthracene	< 76		ug/Kg	76	22	1				"		
206-44-0	Fluoranthene	1,100		ug/Kg	76	35	1				"		
129-00-0	Pyrene	1,100		ug/Kg	76	25	1				"		
56-55-3	Benzo(a)anthracene	< 76		ug/Kg	76	30	1				"		
218-01-9	Chrysene	< 76		ug/Kg	76	51	1				"		
205-99-2	Benzo(b)fluoranthene	940		ug/Kg	76	37	1				"		
207-08-9	Benzo(k)fluoranthene	< 76		ug/Kg	76	30	1				"		
50-32-8	Benzo(a)pyrene	< 76		ug/Kg	76	22	1						
193-39-5	Indeno(1,2,3-cd)pyrene	< 76		ug/Kg ug/Kg	76	25	1				"		
		< 76		ugrity	10	25 25	'						

-	<u>dentification</u> US-3-072513-1 -07				<u>Project #</u> 25155		<u>Matrix</u> Sedimen		ection Date 5-Jul-13 10		-	ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
	ed Analyses by method SW3545A												
Analysis p	erformed by Spectrum Ana	lytical, Inc No	rth Kingstown	, RI									
191-24-2	Benzo(g,h,i)perylene	< 76		ug/Kg	76	25	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
Surrogate red	coveries:												
205440-82-0	Benzo(e)pvrene-d12	110			32-15	3 %		п			"		

•	dentification			Client F	Project #		Matrix	Colle	ection Date	<u>Time</u>	Re	ceived	
SW-ВВ О SB73837-	J S-3-072513-1 7-08			6022	5155		Surface W	ater 25	-Jul-13 10:	30	25-	Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	tile Organic Compounds by	GCMS											
SVOCs by S													
	by method SW846 3510C	_											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	29-Jul-13	01-Aug-13	ML/	1317842	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1			"	"		Х
0-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1			"	"		
20-12-7	Anthracene	< 0.050		μg/l	0.050	0.013	1	"		"	")
6-55-3	Benzo (a) anthracene	0.288		μg/l	0.050	0.036	1	"		"	")
0-32-8	Benzo (a) pyrene	0.375		μg/l	0.050	0.036	1			"	")
05-99-2	Benzo (b) fluoranthene	0.379		μg/l	0.050	0.031	1	n .		"	")
91-24-2	Benzo (g,h,i) perylene	0.272		μg/l	0.050	0.026	1	n .		"	"		>
07-08-9	Benzo (k) fluoranthene	0.318		μg/l	0.050	0.026	1	n .		"	"		>
18-01-9	Chrysene	0.373		μg/l	0.050	0.022	1			"	"		>
3-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.030	1			"	")
06-44-0	Fluoranthene	0.728		μg/l	0.050	0.017	1			"	")
6-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1			n .	")
93-39-5	Indeno (1,2,3-cd) pyrene	0.310		μg/l	0.050	0.029	1				")
1-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.008	1	н		"	"		
1-20-3	Naphthalene	< 0.050		μg/l	0.050	0.016	1	п		"	")
5-01-8	Phenanthrene	0.341		μg/l	0.050	0.019	1	п		"	")
29-00-0	Pyrene	0.605		μg/l	0.050	0.017	1	н		"	")
Surrogate rec	coveries:												
21-60-8	2-Fluorobiphenyl	57			30-13	0 %					"		
718-51-0	Terphenyl-dl4	76			30-13	0 %							
05440-82-0	Benzo (e) pyrene-d12	80			30-13	0 %					"		
Semivolat	tile Organic Compounds by	GC											
	rine Pesticides												
_	by method SW846 3510C	<u>.</u>											
19-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977)
19-85-7	beta-BHC	< 0.002		μg/l	0.002	0.001	1	п		п	")
19-86-8	delta-BHC	< 0.002		μg/l	0.002	0.001	1			II .	")
3-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.001	1			II .	"		2
6-44-8	Heptachlor	< 0.002		μg/l	0.002	0.001	1				")
											_		
09-00-2	Aldrin	< 0.002		μg/l	0.002	0.001	1	н)
	•	< 0.002 < 0.002		μg/l μg/l	0.002 0.002	0.001 0.002	1	1		"			
024-57-3	Aldrin Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1			" ")
024-57-3 59-98-8	Aldrin Heptachlor epoxide Endosulfan I	< 0.002 < 0.002		μg/l μg/l	0.002 0.002	0.002 0.002					")
024-57-3 59-98-8 0-57-1	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C]	< 0.002 < 0.002 0.004		µg/I µg/I µg/I	0.002 0.002 0.002	0.002 0.002 0.002	1 1 1				"		2
024-57-3 59-98-8 0-57-1 2-55-9	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p')	< 0.002 < 0.002 0.004 < 0.002		hg/l hg/l hg/l	0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002	1 1 1				")
024-57-3 59-98-8 0-57-1 2-55-9 2-20-8	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin	< 0.002 < 0.002 0.004 < 0.002 < 0.005		µg/l µg/l µg/l µg/l	0.002 0.002 0.002 0.002 0.005	0.002 0.002 0.002 0.002 0.002	1 1 1 1				" " " " " " " " " " " " " " " " " " " "		
024-57-3 59-98-8 0-57-1 2-55-9 2-20-8 3213-65-9	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II	< 0.002 < 0.002 0.004 < 0.002 < 0.005 < 0.005		hā\] hā\] hā\] hā\]	0.002 0.002 0.002 0.002 0.005 0.005	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		
024-57-3 59-98-8 00-57-1 2-55-9 2-20-8 3213-65-9 2-54-8	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p')	< 0.002 < 0.002 0.004 < 0.002 < 0.005 < 0.005		hā\l hā\l hā\l hā\l	0.002 0.002 0.002 0.002 0.005 0.005	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		
024-57-3 59-98-8 0-57-1 2-55-9 2-20-8 3213-65-9 2-54-8 031-07-8	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate	< 0.002 < 0.002 0.004 < 0.002 < 0.005 < 0.005 < 0.005		hā\] hā\] hā\] hā\] hā\]	0.002 0.002 0.002 0.002 0.005 0.005 0.005	0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1				" " " "		
024-57-3 59-98-8 0-57-1 2-55-9 2-20-8 3213-65-9 2-54-8 031-07-8	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	< 0.002 < 0.002 0.004 < 0.002 < 0.005 < 0.005 < 0.005 < 0.005		hā\] hā\] hā\] hā\] hā\]	0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		>> >> >> >> >> >>
024-57-3 59-98-8 0-57-1 2-55-9 2-20-8 3213-65-9 2-54-8 031-07-8 0-29-3	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor	< 0.002 < 0.002 0.004 < 0.002 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005		hā/l hā/l hā/l hā/l hā/l hā/l	0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005 0.005	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1						>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
309-00-2 1024-57-3 359-98-8 30-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 30-29-3 72-43-5 33494-70-5 7421-93-4	Aldrin Heptachlor epoxide Endosulfan I Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	< 0.002 < 0.002 0.004 < 0.002 < 0.005 < 0.005 < 0.005 < 0.005		hā\] hā\] hā\] hā\] hā\]	0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1						× × × × × × × × × × × × × × × × × × ×

Client Project # 60225155

Matrix Surface Water Collection Date/Time 25-Jul-13 10:30 Received 25-Jul-13

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by C	GC											
Organochlo	rine Pesticides												
Prepared	by method SW846 3510C												
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Χ
8001-35-2	Toxaphene	< 0.057		μg/l	0.057	0.053	1	н		н	"		Χ
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.006	1	н		н	"		Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	ı		ı	"		
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	72			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	78			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	74			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	69			30-15	0 %		н		ı	"		
Total Met	tals by EPA 200/6000 Series I	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			BEL	1317737	
Total Met	tals by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0018	1	н		н	"		Χ
7440-39-3	Barium	0.105		mg/l	0.0050	0.0007	1	н		н	"		Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0002	1	н		н	"		Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0008	1	н		н	"		Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0009	1	н		н	"		Χ
7440-50-8	Copper	0.0058		mg/l	0.0050	0.0011	1	н		н	"		Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0007	1	н		н	"		Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0020	1	н		н	"		Χ
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0014	1				"		Χ
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0030	1				"		Χ
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0029	1				"		Χ
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0009	1				"		Χ
7440-66-6	Zinc	0.0197		mg/l	0.0050	0.0020	1				"		Х
Total Met	tals by EPA 200 Series Metho	ods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	30-Jul-13	31-Jul-13	JLM	1318008	Χ

SED-BBU SB73837-	US- 4-072513-1 -09			6022	5155		Sedimen		5-Jul-13 11:			Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Organochlo	ile Organic Compounds by Crine Pesticides by method SW846 3545A	GC											
319-84-6	alpha-BHC	< 6.71		μg/kg dry	6.71	1.02	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317981	Χ
319-85-7	beta-BHC	< 6.71		μg/kg dry	6.71	1.13	1				"		Х
319-86-8	delta-BHC	< 6.71		μg/kg dry	6.71	1.14	1				"		Х
58-89-9	gamma-BHC (Lindane)	< 4.03		μg/kg dry	4.03	1.09	1				"		Х
76-44-8	Heptachlor	< 6.71		μg/kg dry	6.71	1.01	1				"		Х
309-00-2	Aldrin	< 6.71		μg/kg dry	6.71	1.07	1				"		Х
1024-57-3	Heptachlor epoxide	< 6.71		μg/kg dry	6.71	1.18	1				"		Х
959-98-8	Endosulfan I	< 6.71		μg/kg dry	6.71	1.18	1	н			"		Х
60-57-1	Dieldrin	< 6.71		μg/kg dry	6.71	1.11	1				"		Х
72-55-9	4,4'-DDE (p,p')	< 6.71		μg/kg dry	6.71	1.14	1				"		Х
72-20-8	Endrin	< 10.7		μg/kg dry	10.7	1.33	1				"		Х
33213-65-9	Endosulfan II	< 10.7		μg/kg dry	10.7	1.15	1				"		Х
72-54-8	4,4'-DDD (p,p')	< 10.7		μg/kg dry	10.7	1.15	1						Х
1031-07-8	Endosulfan sulfate	< 10.7		μg/kg dry	10.7	1.25	1						Х
50-29-3	4,4'-DDT (p,p')	< 10.7		μg/kg dry	10.7	1.13	1						Х
72-43-5	Methoxychlor	< 10.7		μg/kg dry μg/kg dry	10.7	0.900	1				,,		X
53494-70-5	Endrin ketone	< 10.7		μg/kg dry μg/kg dry	10.7	1.21	1				"		X
7421-93-4	Endrin aldehyde	< 10.7					1						X
5103-71-9	-	< 6.71		μg/kg dry	10.7	1.20							
	alpha-Chlordane gamma-Chlordane	< 6.71		μg/kg dry	6.71	1.21	1						X
5566-34-7	_			μg/kg dry	6.71	1.13	1						X
8001-35-2	Toxaphene	< 134		μg/kg dry	134	15.1	1				"		X
57-74-9	Chlordane	< 26.9		μg/kg dry	26.9	3.81	1				"		Χ
15972-60-8	Alachlor	< 6.71		μg/kg dry	6.71	1.56	1						
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	91			30-15	0 %		H .			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	67			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	69			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	58			30-15	0 %					"		
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.0		μg/kg dry	26.0	19.4	1	SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792	Х
11104-28-2	Aroclor-1221	< 26.0		μg/kg dry	26.0	23.4	1	п			"		Х
11141-16-5	Aroclor-1232	< 26.0		μg/kg dry	26.0	16.7	1				"		Х
53469-21-9	Aroclor-1242	< 26.0		μg/kg dry	26.0	15.6	1				"		Х
12672-29-6	Aroclor-1248	< 26.0		μg/kg dry	26.0	13.5	1				"		Χ
11097-69-1	Aroclor-1254	< 26.0		μg/kg dry	26.0	21.7	1				"		Χ
11096-82-5	Aroclor-1260	< 26.0		μg/kg dry	26.0	16.1	1				"		Х
37324-23-5	Aroclor-1262	< 26.0		μg/kg dry	26.0	24.2	1	п			"		Х
11100-14-4	Aroclor-1268	< 26.0		μg/kg dry	26.0	10.7	1				"		Х
Surrogate rec	coveries:			<u> </u>									

Received

30-150 %

10386-84-2

(Sr)

4,4-DB-Octafluorobiphenyl 70

-	<u>dentification</u>			Client P	roject #		Matrix	Colle	ection Date	/Time	Re	ceived	
	US-4-072513-1			6022			Sedimen		5-Jul-13 11:			Jul-13	
SB73837	7-09												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	tile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	65			30-15	0 %		SW846 8082A	26-Jul-13	30-Jul-13	IMR	1317792	
2051-24-3	Decachlorobiphenyl (Sr)	55			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	50			30-15	60 %					"		
Total Met	tals by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 1.94		mg/kg dry	1.94	0.560	1	SW846 6010C	30-Jul-13	31-Jul-13	EDT	1318009	Χ
7440-38-2	Arsenic	3.37		mg/kg dry	1.94	0.847	1	п			"		Χ
7440-39-3	Barium	111		mg/kg dry	1.30	0.417	1	п			"		Χ
7440-41-7	Beryllium	< 0.648		mg/kg dry	0.648	0.196	1	п			"		Χ
7440-43-9	Cadmium	< 0.648		mg/kg dry	0.648	0.190	1	п			"		Χ
7440-47-3	Chromium	36.8		mg/kg dry	1.30	0.280	1						Χ
7440-50-8	Copper	16.4		mg/kg dry	1.30	0.499	1						Χ
7439-97-6	Mercury	< 0.0392		mg/kg dry	0.0392	0.0020	1	SW846 7471B		31-Jul-13	JLM	1318010	Χ
7440-02-0	Nickel	21.2		mg/kg dry	1.30	0.376	1	SW846 6010C		31-Jul-13	EDT	1318009	Х
7439-92-1	Lead	7.39		mg/kg dry	1.94	0.716	1						Х
7440-36-0	Antimony	< 6.48		mg/kg dry	6.48	1.19	1				"		Х
7782-49-2	Selenium	< 1.94		mg/kg dry	1.94	0.557	1						Х
7440-28-0	Thallium	< 3.89		mg/kg dry	3.89	1.10	1	п		п			Х
7440-62-2	Vanadium	38.7		mg/kg dry	1.94	0.601	1	п		п			Х
7440-66-6	Zinc	60.3		mg/kg dry	1.30	0.569	1			н			Х
	Chemistry Parameters			g.ng ary		0.000	•						
General	% Solids	74.1		%			1	SM2540 G Mod.	26-Jul-13	26-Jul-13	DT	1317764	
Subcontro	acted Analyses			70			•	CINIZO TO G INICG.	20 001 10	20 001 10	٥.	1017704	
	· ·	cal Inc. Nort	h Kinastowi	, DI									
Anaiysis p	erformed by Spectrum Analytic Percent Moisture		n Kingsiowi	r, KI PCT	10	0.050	1	ASTM D2216		29-Jul-13	PH-01	R75557	
	reicent Moisture	26		POI	10	0.050	'	PMOIST		29-Jul-13	FH-01	n/555/	
Subcontract	ted Analyses												
	by method SW3545A												
Analysis p	erformed by Spectrum Analyti	cal, Inc Nort	h Kingstowi	ı, RI									
91-20-3	Naphthalene	< 87		ug/Kg	87	26	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
91-57-6	2-Methylnaphthalene	< 87		ug/Kg	87	26	1			н			
208-96-8	Acenaphthylene	< 87		ug/Kg	87	23	1						
83-32-9	Acenaphthene	< 87		ug/Kg	87	24	1	п			"		
86-73-7	Fluorene	< 87		ug/Kg	87	23	1	п			"		
85-01-8	Phenanthrene	< 87		ug/Kg	87	26	1	п			"		
120-12-7	Anthracene	< 87		ug/Kg	87	25	1						
206-44-0	Fluoranthene	< 87		ug/Kg	87	39	1	п			"		
129-00-0	Pyrene	< 87		ug/Kg	87	29	1	п			"		
123-00-0	5 () "	< 87		ug/Kg	87	34	1				"		
56-55-3	Benzo(a)anthracene												
	Benzo(a)anthracene Chrysene	< 87		ug/Ka	87	58	1						
56-55-3	Chrysene	< 87 < 87		ug/Kg ug/Kg	87 87		1				"		
56-55-3 218-01-9	Chrysene Benzo(b)fluoranthene	< 87		ug/Kg	87	42					"		
56-55-3 218-01-9 205-99-2 207-08-9	Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	< 87 < 87		ug/Kg ug/Kg	87 87	42 34	1						
56-55-3 218-01-9 205-99-2	Chrysene Benzo(b)fluoranthene	< 87		ug/Kg	87	42	1				"		

-	lentification US-4-072513-1 -09				<u>Project #</u> 25155		Matrix Sedimen		ection Date 5-Jul-13 11			<u>ceived</u> Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontractory Prepared	ed Analyses by method SW3545A												
Analysis pe	erformed by Spectrum Ana	lytical, Inc Nor	th Kingstown,	, RI									
191-24-2	Benzo(g,h,i)perylene	< 87		ug/Kg	87	29	1	SW846 8270D SIM	30-Jul-13	31-Jul-13	PH-01	72963	
Surrogate rec	overies:												
205440-82-0	Benzo(e)pyrene-d12	99.7			32-15	3 %					"		

-	dentification			Client F	roject #		Matrix	Colle	ection Date	/Time	Re	ceived	
SW-BB U SB73837	JS-4-072513-1 /-10			6022	5155		Surface W	ater 25	5-Jul-13 11:	:00	25-	Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prenared	Analyzed	Analyst	Batch	Cer
	• ,,,												
SVOCs by S													
<u>-repared</u> 33-32-9	by method SW846 3510C	_		//	0.050	0.007		014/04/0 007/00 0114	00 1:140	00 4 40	NAL /	4047040	V
208-96-8	Acenaphthylana	< 0.050		μg/l /'	0.050	0.007	1	SW846 8270D SIM	29-Jul-13	02-Aug-13	ML/	1317842	X
0-12-0	Acenaphthylene	< 0.050		μg/l /l	0.050	0.013	1				"		^
20-12-7	1-Methylnaphthalene Anthracene	< 0.050 < 0.050		μg/l /'	0.050 0.050	0.010 0.013	1				,,		Х
6-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.013	1				,,		<i>,</i>
0-33-8	. ,	0.064		μg/l	0.050	0.036	1				,,)
05-99-2	Benzo (a) pyrene Benzo (b) fluoranthene	0.064		μg/l /l									>
91-24-2	Benzo (g,h,i) perylene	0.050		μg/l	0.050	0.031 0.026	1						>
	Benzo (k) fluoranthene			μg/l	0.050		1				,,		
18-01-9		0.056 0.054		μg/l	0.050	0.026 0.022	1	ı					X
3-70-3	Chrysene Dibenzo (a,h) anthracene	< 0.054 < 0.050		μg/l	0.050	0.022	1				,,		
06-44-0	Fluoranthene			μg/l /'	0.050								>
		0.131		μg/l /'	0.050	0.017	1				")
6-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1				"		
93-39-5	Indeno (1,2,3-cd) pyrene	0.056		μg/l	0.050	0.029	1)
1-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.008	1						
1-20-3	Naphthalene	< 0.050		μg/l	0.050	0.016	1)
5-01-8	Phenanthrene	0.096		μg/l	0.050	0.019	1)
29-00-0	Pyrene	0.103		μg/l	0.050	0.017	1						>
Surrogate red													
21-60-8	2-Fluorobiphenyl	67			30-13	0 %		n .			"		
718-51-0	Terphenyl-dl4	81			30-13	0 %		n .			"		
05440-82-0	Benzo (e) pyrene-d12	81			30-13	0 %		n .			"		
Semivolat	tile Organic Compounds by	GC											
-	orine Pesticides I by method SW846 3510C	<u>.</u>											
19-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	>
19-85-7	beta-BHC	< 0.002		μg/l	0.002	0.001	1	п		ı	")
19-86-8	delta-BHC	< 0.002		μg/l	0.002	0.001	1				")
3-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.001	1	п			"		2
6-44-8	Heptachlor	< 0.002		μg/l	0.002	0.001	1				"		
09-00-2	Aldrin	< 0.002		μg/l	0.002	0.001	1	п		п	")
024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.001	1	п		п	")
		< 0.000		μg/l	0.002	0.001	1	п			")
59-98-8	Endosulfan I	< 0.002		1.0									
	Endosulfan I Dieldrin [2C]	0.002		μg/l	0.002	0.001	1				")
0-57-1					0.002 0.002	0.001 0.002	1				"		
0-57-1 2-55-9	Dieldrin [2C]	0.003		μg/l)
2-55-9 2-20-8	Dieldrin [2C] 4,4'-DDE (p,p')	0.003 < 0.002		µg/l µg/l	0.002	0.002	1				")
0-57-1 2-55-9 2-20-8 3213-65-9	Dieldrin [2C] 4,4'-DDE (p,p') Endrin	0.003 < 0.002 < 0.004		µg/I µg/I µg/I	0.002 0.004	0.002 0.002	1 1				")
0-57-1 2-55-9 2-20-8 3213-65-9 2-54-8	Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II	0.003 < 0.002 < 0.004 < 0.004		hā\l hā\l hā\l	0.002 0.004 0.004	0.002 0.002 0.002	1 1 1				" ")
0-57-1 2-55-9 2-20-8 3213-65-9 2-54-8 031-07-8	Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate	0.003 < 0.002 < 0.004 < 0.004 < 0.004		hā\l hā\l hā\l hā\l	0.002 0.004 0.004 0.004	0.002 0.002 0.002 0.002	1 1 1				" " " " " " " " " " " " " " " " " " " "		
60-57-1 (2-55-9 (2-20-8 (3213-65-9 (2-54-8 (031-07-8 (60-29-3	Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	0.003 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004		hā\l hā\l hā\l hā\l	0.002 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1				" " " " " " " " " " " " " " " " " " " "		> > > >
59-98-8 i0-57-1 '2-55-9 '2-20-8 i3213-65-9 '2-54-8 i0-29-3 i2-43-5 i3494-70-5	Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor	0.003 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		hā\l hā\l hā\l hā\l hā\l	0.002 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		>> >> >> >>
60-57-1 '2-55-9 '2-20-8 33213-65-9 '2-54-8 031-07-8 60-29-3 '2-43-5	Dieldrin [2C] 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	0.003 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004		hā\l hā\l hā\l hā\l	0.002 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1				" " " "		× × × × × × × × × × × × × × × × × × ×

*	dentification S-4-072513-1				Project # 25155		Matrix Surface Wa		ection Date			ceived Jul-13	
SB73837	-10			0022	.3133		Surface wa	1101 2.	3-Jui-13 11.	.00	23-	Jui-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	rine Pesticides by method SW846 3510C												
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Χ
8001-35-2	Toxaphene	< 0.052		μg/l	0.052	0.048	1				"		Χ
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.006	1				"		Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	ı			"		
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	74			30-15	0 %		н		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	80			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	52			30-15	0 %		ı			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	47			30-15	0 %		н			"		
Total Met	als by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			BEL	1317737	
Total Met	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0018	1			н	"		Χ
7440-39-3	Barium	0.0879		mg/l	0.0050	0.0007	1			н	"		Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0002	1				"		Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0008	1				"		Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0009	1			н	"		Χ
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0011	1			н	"		Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0007	1				"		Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0020	1				"		Χ
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0014	1	ı			"		Χ
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0030	1	н			"		Χ

0.0050

0.0050

0.0050

0.00020

mg/l

mg/l

mg/l

mg/l

0.0029

0.0009

0.0020

0.00008

EPA 245.1/7470A

30-Jul-13

31-Jul-13

JLM

1318008

Χ

Χ

7440-28-0

7440-62-2

7440-66-6

7439-97-6

Thallium

Vanadium

Total Metals by EPA 200 Series Methods

Zinc

Mercury

< 0.0050

< 0.0050

< 0.00020

0.122

Sample I	<u>dentification</u>			Client F	Project #		Matrix	Colle	ection Date	/Time	Re	ceived	
	ent Blank				5155	Ε	Deionized V	·	5-Jul-13 11:			Jul-13	
SB73837	'-11												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	tile Organic Compounds by	GCMS											
SVOCs by S													
	by method SW846 3510C	_											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	29-Jul-13	02-Aug-13	ML/	1317842	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1			"	"		Х
0-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1			"	"		
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.013	1			"	"		Х
6-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.036	1				"		Х
60-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.036	1			"	"		Х
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.031	1			"	"		Х
91-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.026	1			"	"		Х
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.026	1				"		Х
18-01-9	Chrysene	< 0.050		μg/l	0.050	0.022	1				"		Х
3-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.030	1				"		Х
06-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.017	1			"	"		Х
6-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1				"		Х
93-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.029	1				"		Х
1-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.008	1				"		
1-20-3	Naphthalene	< 0.050		μg/l	0.050	0.016	1				"		Х
35-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.019	1				"		Х
29-00-0	Pyrene	< 0.050		μg/l	0.050	0.017	1				"		Х
Surrogate red	coveries:												
321-60-8	2-Fluorobiphenyl	65			30-13	0 %					"		
718-51-0	Terphenyl-dl4	82			30-13	0 %					"		
205440-82-0	Benzo (e) pyrene-d12	74			30-13	0 %					"		
Semivolat	tile Organic Compounds by	GC											
<u>Organochlo</u>	rine Pesticides												
Prepared	by method SW846 3510C	<u>.</u>											
19-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.001	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Х
19-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1				"		X
19-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1				"		Х
8-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.001	1				"		Х
6-44-8	Heptachlor	< 0.002		μg/l	0.002	0.001	1				"		Х
09-00-2	Aldrin	< 0.002		μg/l	0.002	0.001	1			ı	"		Х
024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	п			"		X
59-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	п			"		>
0-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1				"		>
2-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1				"		X
	Endrin	< 0.005		μg/l	0.005	0.003	1				"		>
2-20-8		< 0.005		μg/l	0.005	0.003	1				"		Х
	Endosulfan II				0.005	0.003	1				"		>
3213-65-9	Endosulfan II 4,4'-DDD (p,p')	< 0.005		μg/l	0.000								
3213-65-9 2-54-8		< 0.005 < 0.005		μg/l μg/l	0.005	0.003	1	п			"		X
3213-65-9 '2-54-8 031-07-8	4,4'-DDD (p,p')					0.003 0.002	1 1				"		
3213-65-9 2-54-8 031-07-8 0-29-3	4,4'-DDD (p,p') Endosulfan sulfate	< 0.005		μg/l	0.005								X
33213-65-9 72-54-8 031-07-8 50-29-3 72-43-5	4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	< 0.005 < 0.005		µg/I µg/I µg/I	0.005 0.005	0.002	1				"		X X X
72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5 53494-70-5 7421-93-4	4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor	< 0.005 < 0.005 < 0.005		µg/l µg/l	0.005 0.005 0.005	0.002 0.003	1 1				"		X

	dentification ent Blank -11				<u>Project #</u> 25155	D	Matrix Peionized W		ection Date 5-Jul-13 11			Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	tile Organic Compounds by C	GC											
Organochlo	rine Pesticides												
Prepared	by method SW846 3510C												
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	30-Jul-13	31-Jul-13	TG	1317977	Χ
3001-35-2	Toxaphene	< 0.062		μg/l	0.062	0.057	1				"		Χ
57-74-9	Chlordane	< 0.008		μg/l	0.008	0.007	1	ı			"		Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1				"		
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	89			30-15	0 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	77			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	37			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	31			30-15	0 %		н		п	"		
	ated Biphenyls I by method SW846 3510C												
2674-11-2	Aroclor-1016	< 0.0247		μg/l	0.0247	0.00907	1	SW846 8082A	30-Jul-13	31-Jul-13	BLM	1317978	Х
1104-28-2	Aroclor-1221	< 0.0247		μg/l	0.0247	0.0157	1				"		Х
1141-16-5	Aroclor-1232	< 0.0247		μg/l	0.0247	0.0128	1				"		Х
3469-21-9	Aroclor-1242	< 0.0247		μg/l	0.0247	0.0148	1				"		Х
2672-29-6	Aroclor-1248	< 0.0247		μg/l	0.0247	0.0128	1				"		Х
1097-69-1	Aroclor-1254	< 0.0247		μg/l	0.0247	0.0161	1				"		Х
1096-82-5	Aroclor-1260	< 0.0247		μg/l	0.0247	0.0135	1				"		Х
7324-23-5	Aroclor-1262	< 0.0247		μg/l	0.0247	0.0170	1				"		Х
1100-14-4	Aroclor-1268	< 0.0247		μg/l	0.0247	0.0102	1	ı			"		Х
Surrogate re	coveries:												
0386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %				н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	89			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	55			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	0 %				п	"		
Fotal Me	tals by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			BEL	1317737	
Fotal Me	tals by EPA 6000/7000 Series	Methods											
440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Х
440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0018	1	ı			"		Χ
440-39-3	Barium	< 0.0050		mg/l	0.0050	0.0007	1				"		Х
440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0002	1				"		Х
440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0008	1				"		Х
440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0009	1				"		Х
440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0011	1				"		Х
440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0007	1				"		Х
439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0020	1	II .			"		Х
440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0014	1				"		Х
782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0030	1				"		Х
440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0029	1				"		Х

Equipme SB73837-					5155	D	Matrix eionized V		5-Jul-13 11:		-	Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Total Meta	als by EPA 6000/700	0 Series Methods											
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0009	1	SW846 6010C	30-Jul-13	31-Jul-13	TBC	1318007	Χ
7440-66-6	Zinc	0.0910		mg/l	0.0050	0.0020	1				"		Χ
Total Meta	als by EPA 200 Serie	es Methods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	30-Jul-13	31-Jul-13	JLM	1318008	Χ

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1317842 - SW846 3510C										
Blank (1317842-BLK2)					Pre	pared: 29-Jul-	13 Analyzed:	02-Aug-13		
Acenaphthene	< 0.050		μg/l	0.050			·	•		
Acenaphthylene	< 0.050		μg/l	0.050						
1-Methylnaphthalene	< 0.050		μg/l	0.050						
Anthracene	< 0.050		μg/l	0.050						
Benzo (a) anthracene	< 0.050		μg/l	0.050						
Benzo (a) pyrene	< 0.050		μg/l	0.050						
Benzo (b) fluoranthene	< 0.050		μg/l	0.050						
Benzo (g,h,i) perylene	< 0.050		μg/l	0.050						
Benzo (k) fluoranthene	< 0.050		μg/l	0.050						
Chrysene	< 0.050		μg/l	0.050						
Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050						
Fluoranthene	< 0.050		μg/l	0.050						
Fluorene	< 0.050		μg/l	0.050						
Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050						
2-Methylnaphthalene	< 0.050		μg/l	0.050						
Naphthalene	< 0.050		μg/l	0.050						
Phenanthrene	< 0.050		μg/l	0.050						
Pyrene	< 0.050		μg/l	0.050						
Surrogate: 2-Fluorobiphenyl	46.9		μg/l		50.0		94	30-130		
Surrogate: Terphenyl-dl4	42.6		μg/l		50.0		85	30-130		
Surrogate: Benzo (e) pyrene-d12	0.862		μg/l		1.00		86	30-130		
LCS (1317842-BS2)					Pre	pared: 29-Jul-	13 Analyzed:	02-Aug-13		
Acenaphthene	0.830		μg/l	0.050	1.00		83	40-140		
Acenaphthylene	0.907		μg/l	0.050	1.00		91	40-140		
1-Methylnaphthalene	0.717		μg/l	0.050	1.00		72	40-140		
Anthracene	0.880		μg/l	0.050	1.00		88	40-140		
Benzo (a) anthracene	0.913		μg/l	0.050	1.00		91	40-140		
Benzo (a) pyrene	1.09		μg/l	0.050	1.00		109	40-140		
Benzo (b) fluoranthene	1.05		μg/l	0.050	1.00		105	40-140		
Benzo (g,h,i) perylene	1.13		μg/l	0.050	1.00		113	40-140		
Benzo (k) fluoranthene	1.11		μg/l	0.050	1.00		111	40-140		
Chrysene	0.840		μg/l	0.050	1.00		84	40-140		
Dibenzo (a,h) anthracene	1.25		μg/l	0.050	1.00		125	40-140		
Fluoranthene	0.934		μg/l	0.050	1.00		93	40-140		
Fluorene	0.948		μg/I	0.050	1.00		95	40-140		
Indeno (1,2,3-cd) pyrene	1.23		μg/I	0.050	1.00		123	40-140		
2-Methylnaphthalene	0.814		μg/l	0.050	1.00		81	40-140		
Naphthalene	0.744		μg/I	0.050	1.00		74	40-140		
Phenanthrene	0.814		μg/I	0.050	1.00		81	40-140		
Pyrene	0.964		μg/I	0.050	1.00		96	40-140		
Surrogate: 2-Fluorobiphenyl	40.1		μg/l		50.0		80	30-130		
Surrogate: Terphenyl-dl4	45.1		μg/l		50.0		90	30-130		
Surrogate: Benzo (e) pyrene-d12	0.943		μg/I		1.00		94	30-130		
LCS Dup (1317842-BSD2)	0.040		r3''			nared: 20. Iul	13 Analyzed:			
Acenaphthene	0.894		μg/l	0.050	1.00	paicu. 23-Jul-	89	40-140	7	20
Acenaphthylene	0.955		μg/I μg/I	0.050	1.00		96	40-140	5	20
1-Methylnaphthalene	0.810		μg/I μg/I	0.050	1.00		90 81	40-140	5 12	20
Anthracene	0.935			0.050	1.00		94	40-140	6	20
Benzo (a) anthracene	0.974		μg/l μα/l	0.050	1.00		97	40-140	6	20
• •			μg/l	0.050			97 111			
Benzo (a) pyrene	1.11 1.14		μg/l	0.050	1.00		111	40-140	3	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
atch 1317842 - SW846 3510C										
LCS Dup (1317842-BSD2)					Pre	pared: 29-Jul-	13 Analyzed:	02-Aug-13		
Benzo (g,h,i) perylene	1.19		μg/l	0.050	1.00		119	40-140	5	20
Benzo (k) fluoranthene	1.16		μg/l	0.050	1.00		116	40-140	4	20
Chrysene	0.892		μg/l	0.050	1.00		89	40-140	6	20
Dibenzo (a,h) anthracene	1.26		μg/l	0.050	1.00		126	40-140	0.5	20
Fluoranthene	1.01		μg/l	0.050	1.00		101	40-140	7	20
Fluorene	0.990		μg/l	0.050	1.00		99	40-140	4	20
Indeno (1,2,3-cd) pyrene	1.29		μg/l	0.050	1.00		129	40-140	5	20
2-Methylnaphthalene	0.921		μg/l	0.050	1.00		92	40-140	12	20
Naphthalene	0.827		μg/l	0.050	1.00		83	40-140	11	20
Phenanthrene	0.887		μg/l	0.050	1.00		89	40-140	8	20
Pyrene	1.04		μg/I	0.050	1.00		104	40-140	7	20
Surrogate: 2-Fluorobiphenyl	37.1		μg/l		50.0		74	30-130		
Surrogate: Terphenyl-dl4	42.7		μg/l		50.0		85	30-130		
Surrogate: Benzo (e) pyrene-d12	0.967		μg/l		1.00		97	30-130		
Matrix Spike (1317842-MS2)			Source: SE	373837-08	Pre	pared: 29-Jul-	13 Analyzed:	01-Aug-13		
Acenaphthene	0.804		μg/l	0.050	1.06	BRL	76	40-140		
Acenaphthylene	0.843		μg/l	0.050	1.06	BRL	79	40-140		
1-Methylnaphthalene	0.657		μg/l	0.050	1.06	BRL	62	40-140		
Anthracene	0.782		μg/l	0.050	1.06	0.0426	70	40-140		
Benzo (a) anthracene	0.950		μg/l	0.050	1.06	0.288	62	40-140		
Benzo (a) pyrene	1.02		μg/l	0.050	1.06	0.375	60	40-140		
Benzo (b) fluoranthene	0.981		μg/l	0.050	1.06	0.379	57	40-140		
Benzo (g,h,i) perylene	0.848		μg/l	0.050	1.06	0.272	54	40-140		
Benzo (k) fluoranthene	1.00		μg/l	0.050	1.06	0.318	64	40-140		
Chrysene	0.929			0.050	1.06	0.373	52	40-140		
Dibenzo (a,h) anthracene	0.817		μg/l	0.050	1.06	0.0481	72	40-140		
Fluoranthene	1.07	QM7	μg/l	0.050	1.06	0.728	33	40-140		
Fluorene	0.892	QIVII	μg/l	0.050	1.06	BRL	84			
			μg/l /'	0.050			63	40-140		
Indeno (1,2,3-cd) pyrene	0.983		μg/l		1.06	0.310		40-140		
2-Methylnaphthalene	0.733		μg/l	0.050	1.06	BRL	69	40-140		
Naphthalene	0.721		μg/l	0.050	1.06	BRL	68	40-140		
Phenanthrene	0.956		μg/l	0.050	1.06	0.341	58	40-140		
Pyrene	1.11		μg/l	0.050	1.06	0.605	47	40-140		
Surrogate: 2-Fluorobiphenyl	36.4		μg/l		53.2		68	30-130		
Surrogate: Terphenyl-dl4	40.4		μg/l		53.2		76	30-130		
Surrogate: Benzo (e) pyrene-d12	0.755		μg/l		1.06		71	30-130		
Matrix Spike Dup (1317842-MSD2)			Source: SE	373837-08	Pre	pared: 29-Jul-	13 Analyzed:	01-Aug-13		
Acenaphthene	0.856		μg/l	0.050	1.12	BRL	76	40-140	0.8	20
Acenaphthylene	0.910		μg/l	0.050	1.12	BRL	81	40-140	2	20
1-Methylnaphthalene	0.679		μg/l	0.050	1.12	BRL	60	40-140	2	20
Anthracene	0.883		μg/l	0.050	1.12	0.0426	75	40-140	7	20
Benzo (a) anthracene	1.06		μg/l	0.050	1.12	0.288	69	40-140	10	20
Benzo (a) pyrene	1.14		μg/l	0.050	1.12	0.375	68	40-140	12	20
Benzo (b) fluoranthene	1.11		μg/l	0.050	1.12	0.379	65	40-140	14	20
Benzo (g,h,i) perylene	0.996		μg/l	0.050	1.12	0.272	64	40-140	17	20
Benzo (k) fluoranthene	1.15		μg/l	0.050	1.12	0.318	74	40-140	15	20
Chrysene	1.03		μg/l	0.050	1.12	0.373	58	40-140	11	20
Dibenzo (a,h) anthracene	1.00		μg/l	0.050	1.12	0.0481	85	40-140	16	20
Fluoranthene	1.11	QM7	μg/l	0.050	1.12	0.728	34	40-140	4	20
Fluorene	0.989		μg/l	0.050	1.12	BRL	88	40-140	5	20
Indeno (1,2,3-cd) pyrene	1.17		μg/l	0.050	1.12	0.310	76	40-140	19	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1317842 - SW846 3510C										
Matrix Spike Dup (1317842-MSD2)			Source: SE	373837-08	<u>Pre</u>	pared: 29-Jul-	13 Analyzed:	01-Aug-13		
2-Methylnaphthalene	0.764		μg/l	0.050	1.12	BRL	68	40-140	1	20
Naphthalene	0.696		μg/l	0.050	1.12	BRL	62	40-140	9	20
Phenanthrene	0.992		μg/l	0.050	1.12	0.341	58	40-140	0.4	20
Pyrene	1.15		μg/l	0.050	1.12	0.605	48	40-140	2	20
Surrogate: 2-Fluorobiphenyl	36.0		μg/l		56.2		64	30-130		
Surrogate: Terphenyl-dl4	44.6		μg/l		56.2		79	30-130		
Surrogate: Benzo (e) pyrene-d12	0.854		μg/l		1.12		76	30-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1317792 - SW846 3540C										
Blank (1317792-BLK1)					<u>Pre</u>	pared: 26-Jul-	13 Analyzed:	30-Jul-13		
Aroclor-1016	< 20.0		μg/kg wet	20.0						
Aroclor-1016 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1221	< 20.0		μg/kg wet	20.0						
Aroclor-1221 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1232	< 20.0		μg/kg wet	20.0						
Aroclor-1232 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1242	< 20.0		μg/kg wet	20.0						
Aroclor-1242 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1248	< 20.0		μg/kg wet	20.0						
Aroclor-1248 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1254	< 20.0		μg/kg wet	20.0						
Aroclor-1254 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1260	< 20.0		μg/kg wet	20.0						
Aroclor-1260 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1262	< 20.0		μg/kg wet	20.0						
Aroclor-1262 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1268	< 20.0		μg/kg wet	20.0						
Aroclor-1268 [2C]	< 20.0		μg/kg wet	20.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.0		μg/kg wet		20.0		100	30-150		
LCS (1317792-BS1)					Pre	pared: 26-Jul-	13 Analyzed:	30-Jul-13		
Aroclor-1016	255		μg/kg wet	20.0	250		102	40-140		
Aroclor-1016 [2C]	295		μg/kg wet	20.0	250		118	40-140		
Aroclor-1260	208		μg/kg wet	20.0	250		83	40-140		
Aroclor-1260 [2C]	246		μg/kg wet	20.0	250		98	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	18.0		μg/kg wet		20.0		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	14.0		μg/kg wet		20.0		70	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.0		μg/kg wet		20.0		80	30-150		
LCS Dup (1317792-BSD1)					Pre	pared: 26-Jul-	13 Analyzed:	30-Jul-13		
Aroclor-1016	257		μg/kg wet	20.0	250		103	40-140	0.8	30
Aroclor-1016 [2C]	293		μg/kg wet	20.0	250		117	40-140	0.7	30
Aroclor-1260	197		μg/kg wet	20.0	250		79	40-140	5	30
Aroclor-1260 [2C]	245		μg/kg wet	20.0	250		98	40-140	0.4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	18.0		μg/kg wet		20.0		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.0		μg/kg wet		20.0		80	30-150		
Matrix Spike (1317792-MS1)		<u>s</u>	ource: SB	73837-07	Pre	pared: 26-Jul-	13 Analyzed:	30-Jul-13		
Aroclor-1016	289		μg/kg dry	21.1	264	BRL	110	40-140		
Aroclor-1016 [2C]	263		μg/kg dry	21.1	264	BRL	100	40-140		
Aroclor-1260	181		μg/kg dry	21.1	264	BRL	68	40-140		
Aroclor-1260 [2C]	231		μg/kg dry	21.1	264	BRL	88	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.1		μg/kg dry		21.1		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	26.4		μg/kg dry		21.1		125	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.9		μg/kg dry		21.1		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.1		μg/kg dry		21.1		100	30-150		
Matrix Spike Dup (1317792-MSD1)		s	ource: SB	73837-07	Pre	pared: 26-Jul-	13 Analyzed:	30-Jul-13		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1317792 - SW846 3540C										
Matrix Spike Dup (1317792-MSD1)			Source: SB	73837-07	Pre	pared: 26-Jul-	13 Analyzed:	30-Jul-13		
Aroclor-1016	295		μg/kg dry	22.1	276	BRL	107	40-140	3	30
Aroclor-1016 [2C]	303		μg/kg dry	22.1	276	BRL	110	40-140	10	30
Aroclor-1260	175		μg/kg dry	22.1	276	BRL	64	40-140	7	30
Aroclor-1260 [2C]	209		μg/kg dry	22.1	276	BRL	76	40-140	15	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	22.1		μg/kg dry		22.1		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	25.4		μg/kg dry		22.1		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.6		μg/kg dry		22.1		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.8		μg/kg dry		22.1		85	30-150		
Batch 1317977 - SW846 3510C										
Blank (1317977-BLK1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	< 0.002		μg/l	0.002						
alpha-BHC [2C]	< 0.002		μg/l	0.002						
beta-BHC	< 0.002		μg/l	0.002						
beta-BHC [2C]	< 0.002		μg/l	0.002						
delta-BHC	< 0.002		μg/l	0.002						
delta-BHC [2C]	< 0.002		μg/l	0.002						
gamma-BHC (Lindane)	< 0.002		μg/l	0.002						
gamma-BHC (Lindane) [2C]	< 0.002		μg/l	0.002						
Heptachlor	< 0.002		μg/l	0.002						
Heptachlor [2C]	< 0.002		μg/l	0.002						
Aldrin	< 0.002		μg/l	0.002						
Aldrin [2C]	< 0.002		μg/l	0.002						
Heptachlor epoxide	< 0.002		μg/l	0.002						
Heptachlor epoxide [2C]	< 0.002		μg/l	0.002						
Endosulfan I	< 0.002		μg/l	0.002						
Endosulfan I [2C]	< 0.002		μg/l	0.002						
Dieldrin	< 0.002		μg/l	0.002						
Dieldrin [2C]	< 0.002		μg/l	0.002						
4,4'-DDE (p,p')	< 0.002		μg/l	0.002						
4,4'-DDE (p,p') [2C]	< 0.002		μg/l	0.002						
Endrin	< 0.004		μg/l	0.004						
Endrin [2C]	< 0.004		μg/l	0.004						
Endosulfan II	< 0.004		μg/l	0.004						
Endosulfan II [2C]	< 0.004		μg/l	0.004						
4,4'-DDD (p,p')	< 0.004		μg/l	0.004						
4,4'-DDD (p,p') [2C]	< 0.004		μg/l	0.004						
Endosulfan sulfate	< 0.004		μg/l	0.004						
Endosulfan sulfate [2C]	< 0.004		μg/l	0.004						
4,4'-DDT (p,p')	< 0.004		μg/l	0.004						
4,4'-DDT (p,p') [2C]	< 0.004		μg/l	0.004						
Methoxychlor	< 0.004		μg/l	0.004						
Methoxychlor [2C]	< 0.004		μg/l	0.004						
Endrin ketone	< 0.004		μg/l	0.004						
Endrin ketone [2C]	< 0.004		μg/l	0.004						
Endrin aldehyde	< 0.004		μg/l	0.004						
Endrin aldehyde [2C]	< 0.004		μg/l	0.004						
alpha-Chlordane	< 0.002		μg/l	0.002						
alpha-Chlordane [2C]	< 0.002		μg/l	0.002						
gamma-Chlordane	< 0.002		μg/l	0.002						
gamma-Chlordane [2C]	< 0.002		μg/l	0.002						
Toxaphene	< 0.050		μg/l μg/l	0.052						

1()		77	** .	4000	Spike	Source	0/8==	%REC	n	RPD
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
atch 1317977 - SW846 3510C										
Blank (1317977-BLK1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Toxaphene [2C]	< 0.050		μg/l	0.050						
Chlordane	< 0.007		μg/l	0.007						
Chlordane [2C]	< 0.007		μg/l	0.007						
Alachlor	< 0.002		μg/l	0.002						
Alachlor [2C]	< 0.002		μg/l	0.002						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0165		μg/l		0.0200		82	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0201		μg/l		0.0200		101	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0164		μg/l		0.0200		82	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0163		μg/l		0.0200		81	30-150		
LCS (1317977-BS1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	0.033		μg/l	0.002	0.0500		66	40-140		
alpha-BHC [2C]	0.033		μg/l	0.002	0.0500		66	40-140		
beta-BHC	0.034		μg/l	0.002	0.0500		67	40-140		
beta-BHC [2C]	0.037		μg/l	0.002	0.0500		74	40-140		
delta-BHC	0.034		μg/l	0.002	0.0500		68	40-140		
delta-BHC [2C]	0.035		μg/l	0.002	0.0500		69	40-140		
gamma-BHC (Lindane)	0.033		μg/l	0.002	0.0500		67	40-140		
gamma-BHC (Lindane) [2C]	0.033		μg/l	0.002	0.0500		66	40-140		
Heptachlor	0.033		μg/l	0.002	0.0500		66	40-140		
Heptachlor [2C]	0.034		μg/l	0.002	0.0500		68	40-140		
Aldrin	0.034		μg/l	0.002	0.0500		68	40-140		
Aldrin [2C]	0.034		μg/l	0.002	0.0500		69	40-140		
Heptachlor epoxide	0.036		μg/l	0.002	0.0500		72	40-140		
Heptachlor epoxide [2C]	0.035		μg/I	0.002	0.0500		70	40-140		
Endosulfan I	0.036		μg/l	0.002	0.0500		70 72	40-140		
Endosulfan I [2C]	0.037		μg/I	0.002	0.0500		74	40-140		
Dieldrin	0.035			0.002	0.0500		70	40-140		
Dieldrin [2C]	0.036		μg/l	0.002	0.0500		70 72	40-140		
4,4'-DDE (p,p')	0.036		μg/l	0.002	0.0500		71	40-140		
4,4'-DDE (p,p') [2C]	0.035		μg/l	0.002	0.0500		70	40-140		
Endrin			μg/l	0.002			74			
Endrin [2C]	0.037		μg/l		0.0500			40-140		
Endosulfan II	0.037 0.034		μg/l	0.004 0.004	0.0500		74 68	40-140		
Endosulfan II [2C]	0.034		μg/l		0.0500			40-140		
4,4'-DDD (p,p')			μg/l	0.004 0.004	0.0500		71 73	40-140		
" ' '	0.037		μg/l		0.0500			40-140		
4,4'-DDD (p,p') [2C]	0.036		μg/l	0.004	0.0500		73 75	40-140		
Endosulfan sulfate	0.037		μg/l	0.004	0.0500		75 70	40-140		
Endosulfan sulfate [2C]	0.039		μg/l	0.004	0.0500		79 65	40-140		
4,4'-DDT (p,p')	0.033		μg/l	0.004	0.0500		65 72	40-140		
4,4'-DDT (p,p') [2C]	0.036		μg/l	0.004	0.0500		73 67	40-140		
Methoxychlor [2C]	0.034		μg/l	0.004	0.0500		67 77	40-140		
Methoxychlor [2C]	0.039		μg/l	0.004	0.0500		77	40-140		
Endrin ketone	0.036		μg/l	0.004	0.0500		71	40-140		
Endrin ketone [2C]	0.038		μg/l	0.004	0.0500		76	40-140		
Endrin aldehyde	0.040		μg/l	0.004	0.0500		80	40-140		
Endrin aldehyde [2C]	0.043		μg/l	0.004	0.0500		85	40-140		
alpha-Chlordane	0.034		μg/l	0.002	0.0500		69	40-140		
alpha-Chlordane [2C]	0.034		μg/l	0.002	0.0500		69	40-140		
gamma-Chlordane	0.035		μg/l	0.002	0.0500		69	40-140		
gamma-Chlordane [2C]	0.034		μg/l	0.002	0.0500		68	40-140		
Alachlor	0.034		μg/l	0.002	0.0500		67	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limi
atch 1317977 - SW846 3510C									
					Dua	aaradi 20 kil 10 Aaalimadi	04 11.40		
LCS (1317977-BS1)	0.040		/!	0.002		pared: 30-Jul-13 Analyzed:			
Alachlor [2C]	0.040		μg/l	0.002	0.0500	80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0187		μg/l		0.0200	94	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0204		μg/l		0.0200	102	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0156		μg/l		0.0200	78	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0193		μg/l		0.0200	97	30-150		
LCS Dup (1317977-BSD1)					Pre	pared: 30-Jul-13 Analyzed:	31-Jul-13		
alpha-BHC	0.032		μg/l	0.002	0.0500	64	40-140	2	20
alpha-BHC [2C]	0.033		μg/l	0.002	0.0500	66	40-140	0.02	20
beta-BHC	0.036		μg/l	0.002	0.0500	72	40-140	6	20
beta-BHC [2C]	0.038		μg/l	0.002	0.0500	76	40-140	3	20
delta-BHC	0.034		μg/l	0.002	0.0500	69	40-140	0.6	20
delta-BHC [2C]	0.035		μg/l	0.002	0.0500	69	40-140	0.2	20
gamma-BHC (Lindane)	0.034		μg/l	0.002	0.0500	68	40-140	1	20
gamma-BHC (Lindane) [2C]	0.034		μg/l	0.002	0.0500	67	40-140	2	20
Heptachlor	0.034		μg/l	0.002	0.0500	67	40-140	1	20
Heptachlor [2C]	0.034		μg/l	0.002	0.0500	67	40-140	1	20
Aldrin	0.034		μg/l	0.002	0.0500	68	40-140	0.4	20
Aldrin [2C]	0.034		μg/l	0.002	0.0500	68	40-140	0.3	20
Heptachlor epoxide	0.037		μg/l	0.002	0.0500	73	40-140	2	20
Heptachlor epoxide [2C]	0.035		μg/l	0.002	0.0500	69	40-140	1	20
Endosulfan I	0.036		μg/l	0.002	0.0500	73	40-140	0.9	20
Endosulfan I [2C]	0.036		μg/l	0.002	0.0500	72	40-140	2	20
Dieldrin	0.035		μg/l	0.002	0.0500	71	40-140	0.6	20
Dieldrin [2C]	0.035		μg/l	0.002	0.0500	70	40-140	2	20
4,4'-DDE (p,p')	0.036		μg/l	0.002	0.0500	72	40-140	1	20
4,4'-DDE (p,p') [2C]	0.034		μg/l	0.002	0.0500	68	40-140	3	20
Endrin	0.037		μg/l	0.004	0.0500	75	40-140	2	20
Endrin [2C]	0.036		μg/l	0.004	0.0500	72	40-140	3	20
Endosulfan II	0.036		μg/l	0.004	0.0500	72	40-140	6	20
Endosulfan II [2C]	0.035		μg/l	0.004	0.0500	70	40-140	2	20
4,4'-DDD (p,p')	0.037		μg/l	0.004	0.0500	74	40-140	0.8	20
4,4'-DDD (p,p') [2C]	0.036		μg/l	0.004	0.0500	73	40-140	0.3	20
Endosulfan sulfate	0.038		μg/l	0.004	0.0500	76	40-140	2	20
Endosulfan sulfate [2C]	0.038		μg/l	0.004	0.0500	76	40-140	3	20
4,4'-DDT (p,p')	0.035		μg/l	0.004	0.0500	70	40-140	8	20
4,4'-DDT (p,p') [2C]	0.034		μg/l	0.004	0.0500	68	40-140	8	20
Methoxychlor	0.037		μg/l	0.004	0.0500	75	40-140	11	20
Methoxychlor [2C]	0.036		μg/l	0.004	0.0500	72	40-140	8	20
Endrin ketone	0.038		μg/l	0.004	0.0500	76	40-140	7	20
Endrin ketone [2C]	0.039		μg/l	0.004	0.0500	77	40-140	2	20
Endrin aldehyde	0.041		μg/l	0.004	0.0500	82	40-140	3	20
Endrin aldehyde [2C]	0.040		μg/l	0.004	0.0500	81	40-140	5	20
alpha-Chlordane	0.035		μg/l	0.002	0.0500	69	40-140	0.8	20
alpha-Chlordane [2C]	0.034		μg/l	0.002	0.0500	67	40-140	2	20
gamma-Chlordane	0.037		μg/l	0.002	0.0500	74	40-140	6	20
gamma-Chlordane [2C]	0.033		μg/l	0.002	0.0500	66	40-140	2	20
Alachlor	0.033		μg/l	0.002	0.0500	65	40-140	3	20
Alachlor [2C]	0.041		μg/l	0.002	0.0500	81	40-140	2	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0185		μg/l		0.0200	92	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0202		μg/l		0.0200	101	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0165		μg/l		0.0200	83	30-150		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1317977 - SW846 3510C										
LCS Dup (1317977-BSD1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0182		μg/l		0.0200		91	30-150		
Matrix Spike (1317977-MS1)			Source: SE	373837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	0.031		μg/l	0.002	0.0543	BRL	58	30-150		
alpha-BHC [2C]	0.035		μg/l	0.002	0.0543	BRL	64	30-150		
beta-BHC	0.029		μg/l	0.002	0.0543	BRL	54	30-150		
beta-BHC [2C]	0.051		μg/l	0.002	0.0543	BRL	93	30-150		
delta-BHC	0.028		μg/l	0.002	0.0543	BRL	52	30-150		
delta-BHC [2C]	0.040		μg/l	0.002	0.0543	BRL	73	30-150		
gamma-BHC (Lindane)	0.042		μg/l	0.002	0.0543	BRL	78	30-150		
gamma-BHC (Lindane) [2C]	0.037		μg/l	0.002	0.0543	BRL	68	30-150		
Heptachlor	0.028		μg/l	0.002	0.0543	BRL	51	30-150		
Heptachlor [2C]	0.034		μg/l	0.002	0.0543	BRL	63	30-150		
Aldrin	0.029		μg/l	0.002	0.0543	BRL	54	30-150		
Aldrin [2C]	0.033		μg/l	0.002	0.0543	BRL	60	30-150		
Heptachlor epoxide	0.037		μg/l	0.002	0.0543	BRL	68	30-150		
Heptachlor epoxide [2C]	0.036		μg/l	0.002	0.0543	BRL	66	30-150		
Endosulfan I	0.039		μg/l	0.002	0.0543	BRL	71	30-150		
Endosulfan I [2C]	0.059		μg/l	0.002	0.0543	BRL	109	30-150		
Dieldrin	0.034		μg/l	0.002	0.0543	0.004	55	30-150		
Dieldrin [2C]	0.038		μg/l	0.002	0.0543	0.004	62	30-150		
4,4'-DDE (p,p')	0.032		μg/l	0.002	0.0543	BRL	59	30-150		
4,4'-DDE (p,p') [2C]	0.034		μg/l	0.002	0.0543	BRL	63	30-150		
Endrin	0.036		μg/l	0.004	0.0543	BRL	66	30-150		
Endrin [2C]	0.039		μg/l	0.004	0.0543	BRL	71	30-150		
Endosulfan II	0.039		μg/l	0.004	0.0543	BRL	71	30-150		
Endosulfan II [2C]	0.036		μg/l	0.004	0.0543	BRL	66	30-150		
4,4'-DDD (p,p')	0.036		μg/l	0.004	0.0543	BRL	66	30-150		
4,4'-DDD (p,p') [2C]	0.041		μg/l	0.004	0.0543	BRL	75	30-150		
Endosulfan sulfate	0.032		μg/l	0.004	0.0543	BRL	59	30-150		
Endosulfan sulfate [2C]	0.042		μg/l	0.004	0.0543	BRL	77	30-150		
4,4'-DDT (p,p')	0.032		μg/l	0.004	0.0543	BRL	60	30-150		
4,4'-DDT (p,p') [2C]	0.037		μg/l	0.004	0.0543	BRL	68	30-150		
Methoxychlor	0.032		μg/l	0.004	0.0543	BRL	59	30-150		
Methoxychlor [2C]	0.040		μg/l	0.004	0.0543	BRL	74	30-150		
Endrin ketone	0.035		μg/l	0.004	0.0543	BRL	64	30-150		
Endrin ketone [2C]	0.039		μg/l	0.004	0.0543	BRL	71	30-150		
Endrin aldehyde	0.041		μg/l	0.004	0.0543	BRL	76	30-150		
Endrin aldehyde [2C]	0.041		μg/l	0.004	0.0543	BRL	76	30-150		
alpha-Chlordane	0.034		μg/l	0.002	0.0543	BRL	62	30-150		
alpha-Chlordane [2C]	0.038		μg/l	0.002	0.0543	BRL	69	30-150		
gamma-Chlordane	0.032		μg/l	0.002	0.0543	BRL	59	30-150		
gamma-Chlordane [2C]	0.021		μg/l	0.002	0.0543	BRL	39	30-150		
Alachlor	0.045		μg/l	0.002	0.0543	BRL	82	30-150		
Alachlor [2C]	0.047		μg/l	0.002	0.0543	BRL	87	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0177		μg/l		0.0217		81	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0226		μg/l		0.0217		104	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0137		μg/l		0.0217		63	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0168		μg/l		0.0217		77	30-150		
Matrix Spike Dup (1317977-MSD1)			Source: SE	373837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	0.036		μg/l	0.002	0.0581	BRL	61	30-150	6	20
alpha-BHC [2C]	0.037		μg/l	0.002	0.0581	BRL	63	30-150	1	20

nalyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
eatch 1317977 - SW846 3510C									
Matrix Spike Dup (1317977-MSD1)		Source: SI	373837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
beta-BHC	0.033	μg/l	0.002	0.0581	BRL	57	30-150	5	20
beta-BHC [2C]	0.054	μg/l	0.002	0.0581	BRL	93	30-150	0.06	20
delta-BHC	0.032	μg/l	0.002	0.0581	BRL	55	30-150	4	20
delta-BHC [2C]	0.044	μg/l	0.002	0.0581	BRL	75	30-150	3	20
gamma-BHC (Lindane)	0.049	μg/l	0.002	0.0581	BRL	84	30-150	8	20
gamma-BHC (Lindane) [2C]	0.038	μg/l	0.002	0.0581	BRL	66	30-150	2	20
Heptachlor	0.032	μg/l	0.002	0.0581	BRL	54	30-150	6	20
Heptachlor [2C]	0.036	μg/l	0.002	0.0581	BRL	62	30-150	1	20
Aldrin	0.035	μg/l	0.002	0.0581	BRL	59	30-150	10	20
Aldrin [2C]	0.034	μg/l	0.002	0.0581	BRL	59	30-150	2	20
Heptachlor epoxide	0.043	μg/l	0.002	0.0581	BRL	74	30-150	9	20
Heptachlor epoxide [2C]	0.040	μg/l	0.002	0.0581	BRL	69	30-150	5	20
Endosulfan I	0.044	μg/l	0.002	0.0581	BRL	75	30-150	6	20
Endosulfan I [2C]	0.058	μg/l	0.002	0.0581	BRL	99	30-150	9	20
Dieldrin	0.041	μg/l	0.002	0.0581	0.004	63	30-150	13	20
Dieldrin [2C]	0.039	μg/l	0.002	0.0581	0.004	60	30-150	4	20
4,4'-DDE (p,p')	0.039	μg/l	0.002	0.0581	BRL	67	30-150	13	20
4,4'-DDE (p,p') [2C]	0.037	μg/l	0.002	0.0581	BRL	64	30-150	2	20
Endrin	0.040	μg/l	0.005	0.0581	BRL	69	30-150	5	20
Endrin [2C]	0.043	μg/l	0.005	0.0581	BRL	73	30-150	3	20
Endosulfan II	0.044	μg/l	0.005	0.0581	BRL	76	30-150	6	20
Endosulfan II [2C]	0.039	μg/l	0.005	0.0581	BRL	66	30-150	0.9	20
4,4'-DDD (p,p')	0.044	μg/l	0.005	0.0581	BRL	76	30-150	14	20
4,4'-DDD (p,p') [2C]	0.044	μg/l	0.005	0.0581	BRL	76	30-150	1	20
Endosulfan sulfate	0.038	μg/l	0.005	0.0581	BRL	65	30-150	10	20
Endosulfan sulfate [2C]	0.044	μg/l	0.005	0.0581	BRL	75	30-150	3	20
4,4'-DDT (p,p')	0.036	μg/l	0.005	0.0581	BRL	61	30-150	3	20
4,4'-DDT (p,p') [2C]	0.036	рд/I	0.005	0.0581	BRL	61	30-150	11	20
Methoxychlor	0.033	μg/l	0.005	0.0581	BRL	57	30-150	2	20
Methoxychlor [2C]	0.041	μg/l	0.005	0.0581	BRL	70	30-150	6	20
Endrin ketone	0.041	μg/l	0.005	0.0581	BRL	71	30-150	10	20
Endrin ketone [2C]	0.041	μg/l	0.005	0.0581	BRL	69	30-150	10	20
Endrin aldehyde	0.048	μg/l	0.005	0.0581	BRL	83	30-150	9	20
Endrin aldehyde [2C]	0.043	µg/I	0.005	0.0581	BRL	74	30-150	3	20
alpha-Chlordane	0.043		0.003	0.0581	BRL	70	30-150	12	20
alpha-Chlordane [2C]	0.041	μg/l	0.002	0.0581	BRL	67	30-150	3	20
gamma-Chlordane	0.038	μg/l	0.002	0.0581	BRL	66	30-150	10	20
gamma-Chlordane [2C]	0.022	μg/l	0.002	0.0581	BRL	37	30-150	5	20
Alachlor	0.051	μg/l	0.002	0.0581	BRL	88	30-150	8	20
Alachlor [2C]	0.051	μg/l	0.002	0.0581	BRL	86	30-150	0.6	20
		μg/l 	J.002		DITE			0.0	
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0192	μg/l 		0.0233		82	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0230	μg/l 		0.0233		99	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0161	μg/l 		0.0233		69	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0156	μg/l		0.0233		67	30-150		
atch 1317978 - SW846 3510C									
Blank (1317978-BLK1)				Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Aroclor-1016	< 0.0200	μg/l	0.0200						
Aroclor-1016 [2C]	< 0.0200	μg/l	0.0200						
Aroclor-1221	< 0.0200	μg/l	0.0200						
Aroclor-1221 [2C]	< 0.0200	μg/l	0.0200						
Aroclor-1232	< 0.0200	μg/l	0.0200						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1317978 - SW846 3510C										
Blank (1317978-BLK1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Aroclor-1232 [2C]	< 0.0200		μg/l	0.0200						
Aroclor-1242	< 0.0200		μg/l	0.0200						
Aroclor-1242 [2C]	< 0.0200		μg/l	0.0200						
Aroclor-1248	< 0.0200		μg/l	0.0200						
Aroclor-1248 [2C]	< 0.0200		μg/l	0.0200						
Aroclor-1254	< 0.0200		μg/l	0.0200						
Aroclor-1254 [2C]	< 0.0200		μg/l	0.0200						
Aroclor-1260	< 0.0200		μg/l	0.0200						
Aroclor-1260 [2C]	< 0.0200		μg/l	0.0200						
Aroclor-1262	< 0.0200		μg/l	0.0200						
Aroclor-1262 [2C]	< 0.0200		μg/l	0.0200						
Aroclor-1268	< 0.0200		μg/l	0.0200						
Aroclor-1268 [2C]	< 0.0200		μg/l	0.0200						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0240		μg/l		0.0200		120	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0230		μg/l		0.0200		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0240		μg/l		0.0200		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0250		μg/l		0.0200		125	30-150		
LCS (1317978-BS1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Aroclor-1016	0.289		μg/l	0.0200	0.250		116	40-140		
Aroclor-1016 [2C]	0.264		μg/l	0.0200	0.250		106	40-140		
Aroclor-1260	0.269		μg/l	0.0200	0.250		108	40-140		
Aroclor-1260 [2C]	0.295		μg/I	0.0200	0.250		118	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0120		μg/l		0.0200		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0210		μg/l		0.0200		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0270		μg/l		0.0200		135	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0270		μg/l		0.0200		135	30-150		
LCS Dup (1317978-BSD1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Aroclor-1016	0.288		μg/l	0.0200	0.250		115	40-140	0.3	20
Aroclor-1016 [2C]	0.263		μg/l	0.0200	0.250		105	40-140	0.4	20
Aroclor-1260	0.265		μg/l	0.0200	0.250		106	40-140	1	20
Aroclor-1260 [2C]	0.319		μg/l	0.0200	0.250		128	40-140	8	20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0120		μg/l		0.0200		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0210		μg/l		0.0200		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0270		μg/l		0.0200		135	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0280		μg/l		0.0200		140	30-150		
ntch 1317981 - SW846 3545A										
Blank (1317981-BLK1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	< 3.33		μg/kg wet	3.33						
alpha-BHC [2C]	< 3.33		μg/kg wet	3.33						
beta-BHC	< 3.33		μg/kg wet	3.33						
beta-BHC [2C]	< 3.33		μg/kg wet	3.33						
delta-BHC	< 3.33		μg/kg wet	3.33						
delta-BHC [2C]	< 3.33		μg/kg wet	3.33						
gamma-BHC (Lindane)	< 2.00		μg/kg wet	2.00						
gamma-BHC (Lindane) [2C]	< 2.00		μg/kg wet	2.00						
Heptachlor	< 3.33		μg/kg wet	3.33						
Heptachlor [2C]	< 3.33		μg/kg wet	3.33						
Aldrin	< 3.33		μg/kg wet	3.33						
Aldrin [2C]	< 3.33		μg/kg wet	3.33						
Heptachlor epoxide	< 3.33		μg/kg wet	3.33						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1317981 - SW846 3545A										
Blank (1317981-BLK1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Heptachlor epoxide [2C]	< 3.33		μg/kg wet	3.33			•			
Endosulfan I	< 3.33		μg/kg wet	3.33						
Endosulfan I [2C]	< 3.33		μg/kg wet	3.33						
Dieldrin	< 3.33		μg/kg wet	3.33						
Dieldrin [2C]	< 3.33		μg/kg wet	3.33						
4,4'-DDE (p,p')	< 3.33		μg/kg wet	3.33						
4,4'-DDE (p,p') [2C]	< 3.33		μg/kg wet	3.33						
Endrin	< 5.33		μg/kg wet	5.33						
Endrin [2C]	< 5.33		μg/kg wet	5.33						
Endosulfan II	< 5.33		μg/kg wet	5.33						
Endosulfan II [2C]	< 5.33		μg/kg wet	5.33						
4,4'-DDD (p,p')	< 5.33		μg/kg wet	5.33						
4,4'-DDD (p,p') [2C]	< 5.33		μg/kg wet	5.33						
Endosulfan sulfate	< 5.33		μg/kg wet	5.33						
Endosulfan sulfate [2C]	< 5.33		μg/kg wet	5.33						
4,4'-DDT (p,p')	< 5.33		μg/kg wet	5.33						
4,4'-DDT (p,p') [2C]	< 5.33		μg/kg wet	5.33						
Methoxychlor	< 5.33		μg/kg wet	5.33						
Methoxychlor [2C]	< 5.33		μg/kg wet	5.33						
Endrin ketone	< 5.33		μg/kg wet	5.33						
Endrin ketone [2C]	< 5.33		μg/kg wet	5.33						
Endrin aldehyde	< 5.33		μg/kg wet	5.33						
Endrin aldehyde [2C]	< 5.33		μg/kg wet	5.33						
alpha-Chlordane	< 3.33		μg/kg wet	3.33						
alpha-Chlordane [2C]	< 3.33		μg/kg wet	3.33						
gamma-Chlordane	< 3.33		μg/kg wet	3.33						
gamma-Chlordane [2C]	< 3.33		μg/kg wet	3.33						
Toxaphene	< 66.7		μg/kg wet	66.7						
Toxaphene [2C]	< 66.7		μg/kg wet	66.7						
Chlordane	< 13.3		μg/kg wet	13.3						
Chlordane [2C]	< 13.3		μg/kg wet	13.3						
Alachlor	< 3.33		μg/kg wet	3.33						
Alachlor [2C]	< 3.33		μg/kg wet	3.33						
					2.27			00.450		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	6.63		μg/kg wet		6.67		99	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	6.35		μg/kg wet		6.67		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	5.43		μg/kg wet		6.67		81 50	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	3.49		μg/kg wet		6.67		52	30-150		
LCS (1317981-BS1)						pared: 30-Jul-	13 Analyzed:			
alpha-BHC	10.7		μg/kg wet	3.33	16.7		64	40-140		
alpha-BHC [2C]	11.0		μg/kg wet	3.33	16.7		66	40-140		
beta-BHC	12.3		μg/kg wet	3.33	16.7		74	40-140		
beta-BHC [2C]	12.5		μg/kg wet	3.33	16.7		75 	40-140		
delta-BHC	12.4		μg/kg wet	3.33	16.7		74	40-140		
delta-BHC [2C]	11.6		μg/kg wet	3.33	16.7		70	40-140		
gamma-BHC (Lindane)	12.3		μg/kg wet	2.00	16.7		74	40-140		
gamma-BHC (Lindane) [2C]	10.7		μg/kg wet	2.00	16.7		64	40-140		
Heptachlor	12.2		μg/kg wet	3.33	16.7		73	40-140		
Heptachlor [2C]	11.2		μg/kg wet	3.33	16.7		67	40-140		
Aldrin	12.6		μg/kg wet	3.33	16.7		75	40-140		
Aldrin [2C]	11.4		μg/kg wet	3.33	16.7		68	40-140		
Heptachlor epoxide	12.9		μg/kg wet	3.33	16.7		77	40-140		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1317981 - SW846 3545A										
LCS (1317981-BS1)					<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Heptachlor epoxide [2C]	10.8		μg/kg wet	3.33	16.7		65	40-140		
Endosulfan I	12.8		μg/kg wet	3.33	16.7		77	40-140		
Endosulfan I [2C]	11.6		μg/kg wet	3.33	16.7		69	40-140		
Dieldrin	13.5		μg/kg wet	3.33	16.7		81	40-140		
Dieldrin [2C]	12.0		μg/kg wet	3.33	16.7		72	40-140		
4,4'-DDE (p,p')	13.1		μg/kg wet	3.33	16.7		79	40-140		
4,4'-DDE (p,p') [2C]	11.3		μg/kg wet	3.33	16.7		68	40-140		
Endrin	13.9		μg/kg wet	5.33	16.7		83	40-140		
Endrin [2C]	12.3		μg/kg wet	5.33	16.7		74	40-140		
Endosulfan II	13.5		μg/kg wet	5.33	16.7		81	40-140		
Endosulfan II [2C]	12.0		μg/kg wet	5.33	16.7		72	40-140		
4,4'-DDD (p,p')	13.4		μg/kg wet	5.33	16.7		81	40-140		
4,4'-DDD (p,p') [2C]	12.0		μg/kg wet	5.33	16.7		72	40-140		
Endosulfan sulfate	14.1		μg/kg wet	5.33	16.7		85	40-140		
Endosulfan sulfate [2C]	13.2		μg/kg wet	5.33	16.7		79	40-140		
4,4'-DDT (p,p')	13.1		μg/kg wet	5.33	16.7		79	40-140		
4,4'-DDT (p,p') [2C]	11.9		μg/kg wet	5.33	16.7		71	40-140		
Methoxychlor	13.5		μg/kg wet	5.33	16.7		81	40-140		
Methoxychlor [2C]	13.5		μg/kg wet	5.33	16.7		81	40-140		
Endrin ketone	14.3		μg/kg wet	5.33	16.7		86	40-140		
Endrin ketone [2C]	13.2		μg/kg wet	5.33	16.7		79	40-140		
Endrin aldehyde	14.0		μg/kg wet	5.33	16.7		84	40-140		
Endrin aldehyde [2C]	11.8		μg/kg wet	5.33	16.7		71	40-140		
alpha-Chlordane	12.4		μg/kg wet	3.33	16.7		75	40-140		
alpha-Chlordane [2C]	11.1		μg/kg wet	3.33	16.7		67	40-140		
gamma-Chlordane	13.3		μg/kg wet	3.33	16.7		80	40-140		
gamma-Chlordane [2C]	10.9		μg/kg wet	3.33	16.7		66	40-140		
Alachlor	13.3		μg/kg wet	3.33	16.7		80	40-140		
Alachlor [2C]	14.5		μg/kg wet	3.33	16.7		87	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	6.91		μg/kg wet		6.67		104	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	7.13		μg/kg wet		6.67		107	30-150		
Surrogate: Decachlorobiphenyl (Sr)	5.63		μg/kg wet		6.67		84	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	4.16		μg/kg wet		6.67		62	30-150		
LCS Dup (1317981-BSD1)	4.70		pg/kg Wot			norod: 20 Jul	13 Analyzed:			
alpha-BHC	10.5		ua/ka wot	3.33	16.7	pareu. 30-Jui-	63	40-140	2	30
alpha-BHC [2C]	11.5		µg/kg wet	3.33	16.7		69	40-140	5	30
			μg/kg wet							
beta-BHC beta-BHC [2C]	12.2		μg/kg wet	3.33	16.7		73	40-140	0.8	30
• •	13.7		μg/kg wet	3.33	16.7		82	40-140	9	30
delta-BHC	12.3		μg/kg wet	3.33	16.7		74 72	40-140	0.9	30
delta-BHC [2C]	12.2		μg/kg wet	3.33	16.7		73 73	40-140	5	30
gamma-BHC (Lindane)	12.1		μg/kg wet	2.00	16.7		72 67	40-140	2	30
gamma-BHC (Lindane) [2C]	11.2		μg/kg wet	2.00	16.7		67	40-140	5	30
Heptachlor	12.1		μg/kg wet	3.33	16.7		73	40-140	1	30
Heptachlor [2C]	11.8		μg/kg wet	3.33	16.7		71	40-140	5	30
Aldrin	12.4		μg/kg wet	3.33	16.7		75 70	40-140	1	30
Aldrin [2C]	12.1		μg/kg wet	3.33	16.7		73 7 3	40-140	6	30
Heptachlor epoxide	12.7		μg/kg wet	3.33	16.7		76	40-140	1	30
Heptachlor epoxide [2C]	11.2		μg/kg wet	3.33	16.7		67	40-140	4	30
Endosulfan I	12.8		μg/kg wet	3.33	16.7		77	40-140	0.02	30
Endosulfan I [2C]	12.1		μg/kg wet	3.33	16.7		72	40-140	4	30
Dieldrin	13.3		μg/kg wet	3.33	16.7		80	40-140	2	30

A polyto(a)	D a14	171 _e =	I Init-	*DD1	Spike	Source	0/DEC	%REC	ממק	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1317981 - SW846 3545A										
LCS Dup (1317981-BSD1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Dieldrin [2C]	12.3		μg/kg wet	3.33	16.7		74	40-140	3	30
4,4'-DDE (p,p')	12.9		μg/kg wet	3.33	16.7		78	40-140	1	30
4,4'-DDE (p,p') [2C]	11.7		μg/kg wet	3.33	16.7		70	40-140	4	30
Endrin	13.9		μg/kg wet	5.33	16.7		83	40-140	0.2	30
Endrin [2C]	12.8		μg/kg wet	5.33	16.7		77	40-140	4	30
Endosulfan II	13.4		μg/kg wet	5.33	16.7		80	40-140	1	30
Endosulfan II [2C]	12.5		μg/kg wet	5.33	16.7		75	40-140	4	30
4,4'-DDD (p,p')	13.4		μg/kg wet	5.33	16.7		80	40-140	0.1	30
4,4'-DDD (p,p') [2C]	12.6		μg/kg wet	5.33	16.7		75	40-140	4	30
Endosulfan sulfate	14.1		μg/kg wet	5.33	16.7		85	40-140	0.007	30
Endosulfan sulfate [2C]	13.3		μg/kg wet	5.33	16.7		80	40-140	1	30
4,4'-DDT (p,p')	13.2		μg/kg wet	5.33	16.7		79	40-140	0.6	30
4,4'-DDT (p,p') [2C]	12.4		μg/kg wet	5.33	16.7		74	40-140	4	30
Methoxychlor	13.6		μg/kg wet	5.33	16.7		81	40-140	0.2	30
Methoxychlor [2C]	13.3		μg/kg wet	5.33	16.7		80	40-140	0.8	30
Endrin ketone	14.3		μg/kg wet	5.33	16.7		86	40-140	0.1	30
Endrin ketone [2C]	13.8		μg/kg wet	5.33	16.7		83	40-140	4	30
Endrin aldehyde	14.0		μg/kg wet	5.33	16.7		84	40-140	0.1	30
Endrin aldehyde [2C]	12.3		μg/kg wet	5.33	16.7		74	40-140	3	30
alpha-Chlordane	12.4		μg/kg wet	3.33	16.7		74	40-140	0.5	30
alpha-Chlordane [2C]	11.6		μg/kg wet	3.33	16.7		69	40-140	4	30
gamma-Chlordane	13.3		μg/kg wet	3.33	16.7		80	40-140	0.4	30
gamma-Chlordane [2C]	11.4		μg/kg wet	3.33	16.7		68	40-140	4	30
Alachlor	12.8		μg/kg wet	3.33	16.7		77	40-140	4	30
Alachlor [2C]	15.0		μg/kg wet	3.33	16.7		90	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	6.78		μg/kg wet		6.67		102	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	7.46		μg/kg wet		6.67		112	30-150		
Surrogate: Decachlorobiphenyl (Sr)	5.47		μg/kg wet		6.67		82	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	4.43		μg/kg wet		6.67		67	30-150		
Matrix Spike (1317981-MS1)			Source: SB	<u>73837-07</u>	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	18.2		μg/kg dry	5.51	27.6	BRL	66	30-150		
alpha-BHC [2C]	19.5		μg/kg dry	5.51	27.6	BRL	71	30-150		
beta-BHC	13.9		μg/kg dry	5.51	27.6	BRL	51	30-150		
beta-BHC [2C]	15.2		μg/kg dry	5.51	27.6	BRL	55	30-150		
delta-BHC	18.4		μg/kg dry	5.51	27.6	BRL	67	30-150		
delta-BHC [2C]	17.4		μg/kg dry	5.51	27.6	BRL	63	30-150		
gamma-BHC (Lindane)	19.6		μg/kg dry	3.31	27.6	BRL	71	30-150		
gamma-BHC (Lindane) [2C]	18.2		μg/kg dry	3.31	27.6	BRL	66	30-150		
Heptachlor	18.0		μg/kg dry	5.51	27.6	BRL	65	30-150		
Heptachlor [2C]	16.9		μg/kg dry	5.51	27.6	BRL	61	30-150		
Aldrin	18.5		μg/kg dry	5.51	27.6	BRL	67	30-150		
Aldrin [2C]	17.9		μg/kg dry	5.51	27.6	BRL	65	30-150		
Heptachlor epoxide	19.2		μg/kg dry	5.51	27.6	BRL	70	30-150		
Heptachlor epoxide [2C]	18.2		μg/kg dry	5.51	27.6	BRL	66	30-150		
Endosulfan I	18.3		μg/kg dry	5.51	27.6	BRL	66	30-150		
Endosulfan I [2C]	18.3		μg/kg dry	5.51	27.6	BRL	66	30-150		
Dieldrin	24.2		μg/kg dry	5.51	27.6	3.85	74	30-150		
Dieldrin [2C]	19.8		μg/kg dry	5.51	27.6	2.70	62	30-150		
4,4'-DDE (p,p')	36.8		μg/kg dry	5.51	27.6	22.5	52	30-150		
4,4'-DDE (p,p') [2C]	28.6		μg/kg dry	5.51	27.6	19.1	34	30-150		
Endrin	24.5		μg/kg dry	8.82	27.6	BRL	89	30-150		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
atch 1317981 - SW846 3545A										
Matrix Spike (1317981-MS1)			Source: SB	73837-07	<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Endrin [2C]	22.4		μg/kg dry	8.82	27.6	BRL	81	30-150		
Endosulfan II	18.8		μg/kg dry	8.82	27.6	BRL	68	30-150		
Endosulfan II [2C]	22.2		μg/kg dry	8.82	27.6	BRL	81	30-150		
4,4'-DDD (p,p')	33.5		μg/kg dry	8.82	27.6	16.0	64	30-150		
4,4'-DDD (p,p') [2C]	33.7		μg/kg dry	8.82	27.6	15.3	67	30-150		
Endosulfan sulfate	20.7		μg/kg dry	8.82	27.6	BRL	75	30-150		
Endosulfan sulfate [2C]	18.1		μg/kg dry	8.82	27.6	BRL	66	30-150		
4,4'-DDT (p,p')	51.9		μg/kg dry	8.82	27.6	30.7	77	30-150		
4,4'-DDT (p,p') [2C]	51.2		μg/kg dry	8.82	27.6	26.2	91	30-150		
Methoxychlor	19.8		μg/kg dry	8.82	27.6	BRL	72	30-150		
Methoxychlor [2C]	22.0		μg/kg dry	8.82	27.6	BRL	80	30-150		
Endrin ketone	20.1		μg/kg dry	8.82	27.6	BRL	73	30-150		
Endrin ketone [2C]	21.5		μg/kg dry	8.82	27.6	BRL	78	30-150		
Endrin aldehyde	21.4		μg/kg dry	8.82	27.6	BRL	78	30-150		
Endrin aldehyde [2C]	20.3		μg/kg dry	8.82	27.6	BRL	74	30-150		
alpha-Chlordane	22.9		μg/kg dry	5.51	27.6	5.83	62	30-150		
alpha-Chlordane [2C]	21.2		μg/kg dry	5.51	27.6	8.89	45	30-150		
gamma-Chlordane	34.1	QM1	μg/kg dry	5.51	27.6	44.6	-38	30-150		
gamma-Chlordane [2C]	15.9		μg/kg dry	5.51	27.6	1.99	50	30-150		
Alachlor	24.1		μg/kg dry	5.51	27.6	BRL	87	30-150		
Alachlor [2C]	38.2		μg/kg dry	5.51	27.6	BRL	139	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	11.7		μg/kg dry		11.0		107	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	14.1		μg/kg dry		11.0		128	30-150		
Surrogate: Decachlorobiphenyl (Sr)	9.13		μg/kg dry		11.0		83	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	8.77		μg/kg dry		11.0		80	30-150		
Matrix Spike Dup (1317981-MSD1)			Source: SB	73837-07	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
alpha-BHC	18.3		μg/kg dry	5.56	27.8	BRL	66	30-150	0.2	30
alpha-BHC [2C]	19.5		μg/kg dry	5.56	27.8	BRL	70	30-150	1	30
beta-BHC	14.1		μg/kg dry	5.56	27.8	BRL	51	30-150	0.2	30
beta-BHC [2C]	14.1		μg/kg dry	5.56	27.8	BRL	51	30-150	8	30
delta-BHC	18.9		μg/kg dry	5.56	27.8	BRL	68	30-150	2	30
delta-BHC [2C]	17.6		μg/kg dry	5.56	27.8	BRL	63	30-150	0.4	30
gamma-BHC (Lindane)	20.5		μg/kg dry	3.33	27.8	BRL	74	30-150	4	30
gamma-BHC (Lindane) [2C]	18.3		μg/kg dry	3.33	27.8	BRL	66	30-150	0.1	30
Heptachlor	19.3		μg/kg dry	5.56	27.8	BRL	69	30-150	6	30
Heptachlor [2C]	16.9		μg/kg dry	5.56	27.8	BRL	61	30-150	1	30
Aldrin	18.4		μg/kg dry	5.56	27.8	BRL	66	30-150	2	30
Aldrin [2C]	18.4		μg/kg dry	5.56	27.8	BRL	66	30-150	2	30
Heptachlor epoxide	19.3		μg/kg dry	5.56	27.8	BRL	69	30-150	0.5	30
Heptachlor epoxide [2C]	18.4		μg/kg dry	5.56	27.8	BRL	66	30-150	0.2	30
Endosulfan I	18.3		μg/kg dry	5.56	27.8	BRL	66	30-150	0.8	30
Endosulfan I [2C]	18.2		μg/kg dry	5.56	27.8	BRL	66	30-150	1	30
Dieldrin	23.6		μg/kg dry	5.56	27.8	3.85	71	30-150	4	30
Dieldrin [2C]	20.5		μg/kg dry	5.56	27.8	2.70	64	30-150	3	30
4,4'-DDE (p,p')	36.3		μg/kg dry	5.56	27.8	22.5	50	30-150	4	30
4,4'-DDE (p,p') [2C]	29.0		μg/kg dry	5.56	27.8	19.1	36	30-150	3	30
Endrin	24.0		μg/kg dry	8.89	27.8	BRL	86	30-150	3	30
Endrin [2C]	19.4		μg/kg dry	8.89	27.8	BRL	70	30-150	15	30
Endosulfan II	18.4		μg/kg dry	8.89	27.8	BRL	66	30-150	3	30
Endosulfan II [2C]	19.0		μg/kg dry	8.89	27.8	BRL	68	30-150	17	30
4,4'-DDD (p,p')	32.9		μg/kg dry	8.89	27.8	16.0	61	30-150	4	30

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1317981 - SW846 3545A										
Matrix Spike Dup (1317981-MSD1)			Source: SB	73837-07	<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
4,4'-DDD (p,p') [2C]	33.3		μg/kg dry	8.89	27.8	15.3	65	30-150	3	30
Endosulfan sulfate	20.4		μg/kg dry	8.89	27.8	BRL	73	30-150	3	30
Endosulfan sulfate [2C]	18.2		μg/kg dry	8.89	27.8	BRL	66	30-150	0.2	30
4,4'-DDT (p,p')	52.0		μg/kg dry	8.89	27.8	30.7	77	30-150	0.5	30
4,4'-DDT (p,p') [2C]	46.3		μg/kg dry	8.89	27.8	26.2	72	30-150	22	30
Methoxychlor	20.2		μg/kg dry	8.89	27.8	BRL	73	30-150	1	30
Methoxychlor [2C]	18.2		μg/kg dry	8.89	27.8	BRL	65	30-150	20	30
Endrin ketone	19.9		μg/kg dry	8.89	27.8	BRL	72	30-150	2	30
Endrin ketone [2C]	19.6		μg/kg dry	8.89	27.8	BRL	70	30-150	10	30
Endrin aldehyde	19.6		μg/kg dry	8.89	27.8	BRL	70	30-150	10	30
Endrin aldehyde [2C]	20.6		μg/kg dry	8.89	27.8	BRL	74	30-150	0.6	30
alpha-Chlordane	22.5		μg/kg dry	5.56	27.8	5.83	60	30-150	4	30
alpha-Chlordane [2C]	21.3		μg/kg dry	5.56	27.8	8.89	45	30-150	0.2	30
gamma-Chlordane	36.2	QM1	μg/kg dry	5.56	27.8	44.6	-30	30-150	NR	30
gamma-Chlordane [2C]	16.3		μg/kg dry	5.56	27.8	1.99	52	30-150	2	30
Chlordane	131		μg/kg dry	22.2		49.5		30-150		30
Chlordane [2C]	86.7		μg/kg dry	22.2		34.7		30-150		30
Alachlor	25.0		μg/kg dry	5.56	27.8	BRL	90	30-150	3	30
Alachlor [2C]	38.6		μg/kg dry	5.56	27.8	BRL	139	30-150	0.2	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	11.7		μg/kg dry		11.1		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	11.3		μg/kg dry		11.1		101	30-150		
Surrogate: Decachlorobiphenyl (Sr)	9.53		μg/kg dry		11.1		86	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	8.28		μg/kg dry		11.1		74	30-150		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1318007 - SW846 3005A										
Blank (1318007-BLK1)					<u>Pre</u> r	ared: 30-Jul-	13 Analyzed:	31-Jul-13		
Silver	< 0.0050		mg/l	0.0050						
Lead	< 0.0075		mg/l	0.0075						
Nickel	< 0.0050		mg/l	0.0050						
Copper	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
Beryllium	< 0.0020		mg/l	0.0020						
Arsenic	< 0.0040		mg/l	0.0040						
Cadmium	< 0.0025		mg/l	0.0025						
Zinc	< 0.0050		mg/l	0.0050						
Vanadium	< 0.0050		mg/l	0.0050						
Thallium	< 0.0050		mg/l	0.0050						
Selenium	< 0.0150		mg/l	0.0150						
Barium	< 0.0050		mg/l	0.0050						
Antimony	< 0.0060		mg/l	0.0060						
LCS (1318007-BS1)			9.		Pror	ared: 30- lul-	13 Analyzed:	31- Jul-13		
Thallium	1.31		mg/l	0.0050	1.25	<u> </u>	104	85-115		
Arsenic	1.28		mg/l	0.0040	1.25		102	85-115		
Silver	1.30		mg/l	0.0050	1.25		104	85-115		
Beryllium	1.25		-	0.0020	1.25		100	85-115		
Cadmium	1.34		mg/l	0.0025	1.25		107	85-115		
Lead	1.30		mg/l	0.0025			107			
Vanadium			mg/l	0.0075	1.25		98	85-115		
	1.23		mg/l		1.25			85-115		
Selenium	1.29		mg/l	0.0150	1.25		103	85-115		
Barium	1.24		mg/l	0.0050	1.25		99	85-115		
Chromium	1.27		mg/l	0.0050	1.25		101	85-115		
Antimony	1.24		mg/l	0.0060	1.25		99	85-115		
Nickel	1.21		mg/l	0.0050	1.25		97	85-115		
Copper	1.32		mg/l	0.0050	1.25		106	85-115		
Zinc	1.28		mg/l	0.0050	1.25		102	85-115		
LCS Dup (1318007-BSD1)					Prep	ared: 30-Jul-	13 Analyzed:	31-Jul-13		
Beryllium	1.24		mg/l	0.0020	1.25		99	85-115	0.5	20
Chromium	1.27		mg/l	0.0050	1.25		102	85-115	0.5	20
Copper	1.33		mg/l	0.0050	1.25		107	85-115	0.9	20
Nickel	1.22		mg/l	0.0050	1.25		97	85-115	0.3	20
Barium	1.24		mg/l	0.0050	1.25		100	85-115	0.4	20
Zinc	1.28		mg/l	0.0050	1.25		102	85-115	0.04	20
Selenium	1.29		mg/l	0.0150	1.25		103	85-115	0.08	20
Vanadium	1.23		mg/l	0.0050	1.25		99	85-115	0.6	20
Lead	1.30		mg/l	0.0075	1.25		104	85-115	0.3	20
Thallium	1.31		mg/l	0.0050	1.25		105	85-115	0.2	20
Antimony	1.25		mg/l	0.0060	1.25		100	85-115	0.4	20
Silver	1.30		mg/l	0.0050	1.25		104	85-115	0.8	20
Cadmium	1.34		mg/l	0.0025	1.25		107	85-115	0.2	20
Arsenic	1.28		mg/l	0.0040	1.25		102	85-115	0.2	20
<u>Duplicate (1318007-DUP1)</u>			Source: SE	373837-06		ared: 30-Jul-	13 Analyzed:			
Vanadium	0.0028	J	mg/l	0.0050	<u>. 19</u>	0.0030	,		7	20
Zinc	0.0248		mg/l	0.0050		0.0265			6	20
Thallium	< 0.0050		mg/l	0.0050		BRL			ŭ	20
Selenium	< 0.0150		mg/l	0.0150		BRL				20
Antimony	0.0015	J	mg/l	0.0060		BRL				20
Lead	0.0013	J	mg/l	0.0000		0.0060			0.8	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1318007 - SW846 3005A										
Duplicate (1318007-DUP1)			Source: SE	B73837-06	Pre	pared: 30-Jul-	-13 Analyzed:	31-Jul-13		
Nickel	0.0038	J	mg/l	0.0050		0.0038	,		1	20
Copper	0.0078		mg/l	0.0050		0.0086			10	20
Chromium	0.0022	J	mg/l	0.0050		0.0021			2	20
Beryllium	0.0002	J	mg/l	0.0020		BRL			_	20
Barium	0.116		mg/l	0.0050		0.122			5	20
Arsenic	< 0.0040		mg/l	0.0040		0.0018			-	20
Silver	< 0.0050		mg/l	0.0050		BRL				20
Cadmium	< 0.0025		mg/l	0.0025		BRL				20
	0.0020		Source: SE		Dro		-13 Analyzed:	21 Jul 12		
Matrix Spike (1318007-MS1) Vanadium	4.22			0.0050		•	98			
	1.23		mg/l		1.25	0.0026		70-130		
Copper Chromium	1.33		mg/l	0.0050	1.25	0.0058	106	75-125		
	1.25		mg/l	0.0050	1.25	0.0022	100	75-125		
Cadmium	1.34		mg/l	0.0025	1.25	BRL	107	75-125 75-105		
Beryllium	1.20		mg/l	0.0020	1.25	0.0002	96 07	75-125 75-125		
Barium	1.31		mg/l	0.0050	1.25	0.105	97	75-125		
Arsenic	1.29		mg/l	0.0040	1.25	0.0022	103	75-125		
Silver	1.31		mg/l	0.0050	1.25	BRL	105	75-125		
Antimony	1.25		mg/l	0.0060	1.25	0.0022	100	75-125		
Thallium	1.30		mg/l	0.0050	1.25	BRL	104	75-125		
Zinc	1.27		mg/l	0.0050	1.25	0.0197	100	75-125		
Nickel	1.18		mg/l	0.0050	1.25	0.0028	94	75-125		
Lead	1.27		mg/l	0.0075	1.25	0.0052	101	75-125		
Selenium	1.29		mg/l	0.0150	1.25	BRL	103	75-125		
Matrix Spike Dup (1318007-MSD1)			Source: SE	B73837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Copper	1.39		mg/l	0.0050	1.25	0.0058	110	75-125	4	20
Selenium	1.32		mg/l	0.0150	1.25	BRL	106	75-125	2	20
Beryllium	1.26		mg/l	0.0020	1.25	0.0002	101	75-125	4	20
Thallium	1.33		mg/l	0.0050	1.25	BRL	106	75-125	2	20
Barium	1.36		mg/l	0.0050	1.25	0.105	101	75-125	4	20
Cadmium	1.37		mg/l	0.0025	1.25	BRL	110	75-125	2	20
Chromium	1.30		mg/l	0.0050	1.25	0.0022	103	75-125	4	20
Antimony	1.28		mg/l	0.0060	1.25	0.0022	102	75-125	2	20
Lead	1.30		mg/l	0.0075	1.25	0.0052	104	75-125	2	20
Nickel	1.21		mg/l	0.0050	1.25	0.0028	97	75-125	3	20
Zinc	1.29		mg/l	0.0050	1.25	0.0197	102	75-125	2	20
Vanadium	1.27		mg/l	0.0050	1.25	0.0026	101	70-130	3	20
Silver	1.34		mg/l	0.0050	1.25	BRL	107	75-125	2	20
Arsenic	1.33		mg/l	0.0040	1.25	0.0022	106	75-125	3	20
Post Spike (1318007-PS1)			Source: SE	B73837-08	Pre	pared: 30-Jul	-13 Analyzed:	31-Jul-13		
Cadmium	1.35		mg/l	0.0025	1.25	BRL	108	80-120		
Beryllium	1.22		mg/l	0.0020	1.25	0.0002	98	80-120		
Chromium	1.26		mg/l	0.0050	1.25	0.0022	100	80-120		
Barium	1.32		mg/l	0.0050	1.25	0.105	97	80-120		
Lead	1.28		mg/l	0.0075	1.25	0.0052	102	80-120		
Copper	1.34		mg/l	0.0050	1.25	0.0058	107	80-120		
Silver	1.32		mg/l	0.0050	1.25	BRL	105	80-120		
Antimony	1.26		mg/l	0.0060	1.25	0.0022	100	80-120		
Selenium	1.30		mg/l	0.0150	1.25	BRL	104	80-120		
Thallium	1.30		mg/l	0.0050	1.25	BRL	104	80-120		
Vanadium	1.23		mg/l	0.0050	1.25	0.0026	98	80-120		
v anadium	1.23		my/i	0.0000	1.40	0.0020	50	00-120		

A :: -l-+-(-)	n t	171	11. 1	*DDI	Spike	Source	0/DEC	%REC	DDD	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1318007 - SW846 3005A										
Post Spike (1318007-PS1)			Source: SB	373837-08	Pre	pared: 30-Jul	-13 Analyzed:	31-Jul-13		
Nickel	1.18		mg/l	0.0050	1.25	0.0028	94	80-120		
Arsenic	1.30		mg/l	0.0040	1.25	0.0022	104	80-120		
3atch 1318009 - SW846 3050B										
Blank (1318009-BLK1)					<u>Pre</u>	pared: 30-Jul	-13 Analyzed:	31-Jul-13		
Silver	< 1.45		mg/kg wet	1.45						
Nickel	< 0.966		mg/kg wet	0.966						
Arsenic	< 1.45		mg/kg wet	1.45						
Beryllium	< 0.483		mg/kg wet	0.483						
Cadmium	< 0.483		mg/kg wet	0.483						
Copper	< 0.966		mg/kg wet	0.966						
Lead	< 1.45		mg/kg wet	1.45						
Antimony	< 4.83		mg/kg wet	4.83						
Selenium	< 1.45		mg/kg wet	1.45						
Thallium	< 2.90		mg/kg wet	2.90						
Vanadium	< 1.45		mg/kg wet	1.45						
Zinc	< 0.966		mg/kg wet	0.966						
Chromium	< 0.966		mg/kg wet	0.966						
Barium	< 0.966		mg/kg wet	0.966						
<u>Duplicate (1318009-DUP1)</u>			Source: SB		Pre		-13 Analyzed:	31-Jul-13		
Selenium	< 1.47		mg/kg dry	1.47		BRL				20
Zinc	34.1		mg/kg dry	0.979		33.9			0.4	20
Vanadium	17.8		mg/kg dry	1.47		21.0			16	20
Thallium	< 2.94		mg/kg dry	2.94		BRL				20
Antimony	< 4.89	0.00	mg/kg dry	4.89		BRL				20
Lead	10.6	QR6	mg/kg dry	1.47		50.9			131	20
Silver	< 1.47	ODe	mg/kg dry	1.47		BRL			0.4	20
Arsenic	1.53	QR8	mg/kg dry	1.47		2.09			31	20
Copper	12.9		mg/kg dry	0.979		14.5			12	20
Chromium Cadmium	11.2 < 0.489		mg/kg dry	0.979		13.1			15	20
Beryllium	0.277	J	mg/kg dry	0.489 0.489		BRL 0.246			12	20 20
Nickel	14.9	3	mg/kg dry	0.469		14.4				
Barium	39.0		mg/kg dry mg/kg dry	0.979		40.1			4	20 20
	39.0				D		40 A	04 11.40	3	20
Matrix Spike (1318009-MS1) Chromium	133		Source: SB mg/kg dry	1.07	133	<u>pared: 30-Jul</u> 13.1	-13 Analyzed: 90	75-125		
Zinc	141		mg/kg dry	1.07	133	33.9	81	75-125 75-125		
Antimony	94.4	QM8	mg/kg dry	5.33	133	BRL	71	75-125 75-125		
Lead	122	QM8	mg/kg dry	1.60	133	50.9	53	75-125 75-125		
Copper	140	QIVIO	mg/kg dry	1.07	133	14.5	94	75-125 75-125		
Nickel	121		mg/kg dry	1.07	133	14.4	80	75-125		
Vanadium	141		mg/kg dry	1.60	133	21.0	90	75-125 75-125		
Selenium	120		mg/kg dry	1.60	133	BRL	90	75-125		
Silver	121		mg/kg dry	1.60	133	BRL	91	75-125		
Arsenic	123		mg/kg dry	1.60	133	2.09	91	75-125 75-125		
Cadmium	116		mg/kg dry	0.533	133	BRL	87	75-125		
Thallium	131		mg/kg dry	3.20	133	BRL	98	75-125		
Beryllium	120		mg/kg dry	0.533	133	0.246	90	75-125		
Barium	176		mg/kg dry	1.07	133	40.1	102	75-125		
Matrix Spike Dup (1318009-MSD1)			Source: SB				-13 Analyzed:			
Silver	115		mg/kg dry	1.58	132	BRL	87	75-125	5	20
Beryllium	113		mg/kg dry	0.528	132	0.246	86	75-125 75-125	6	20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1318009 - SW846 3050B										
Matrix Spike Dup (1318009-MSD1)			Source: SB	73837-07	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Selenium	112		mg/kg dry	1.58	132	BRL	85	75-125	6	20
Chromium	128		mg/kg dry	1.06	132	13.1	87	75-125	4	20
Nickel	119		mg/kg dry	1.06	132	14.4	79	75-125	2	20
Antimony	87.2	QM8	mg/kg dry	5.28	132	BRL	66	75-125	8	20
Thallium	131		mg/kg dry	3.17	132	BRL	99	75-125	0.05	20
Vanadium	134		mg/kg dry	1.58	132	21.0	86	75-125	5	20
Cadmium	111		mg/kg dry	0.528	132	BRL	84	75-125	4	20
Copper	135		mg/kg dry	1.06	132	14.5	92	75-125	3	20
Arsenic	116		mg/kg dry	1.58	132	2.09	86	75-125	6	20
Zinc	138		mg/kg dry	1.06	132	33.9	79	75-125	2	20
Lead	118	QM8	mg/kg dry	1.58	132	50.9	51	75-125	3	20
Barium	168		mg/kg dry	1.06	132	40.1	97	75-125	5	20
			Source: SB				13 Analyzed:		ŭ	
Post Spike (1318009-PS1) Thallium	140			3.32	138	BRL	101	80-120		
Chromium	140 142		mg/kg dry		138	13.1		80-120 80-120		
Cadmium			mg/kg dry	1.11			93			
	129		mg/kg dry	0.554	138	BRL	93	80-120		
Beryllium	122		mg/kg dry	0.554	138	0.246	88	80-120		
Zinc	154		mg/kg dry	1.11	138	33.9	87	80-120		
Selenium	128		mg/kg dry	1.66	138	BRL	92	80-120		
Antimony	127		mg/kg dry	5.54	138	BRL	91	80-120		
Lead	170		mg/kg dry	1.66	138	50.9	86	80-120		
Copper	150		mg/kg dry	1.11	138	14.5	98	80-120		
Arsenic	131		mg/kg dry	1.66	138	2.09	93	80-120		
Nickel	133		mg/kg dry	1.11	138	14.4	86	80-120		
Silver	113		mg/kg dry	1.66	138	BRL	81	80-120		
Vanadium	147		mg/kg dry	1.66	138	21.0	91	80-120		
Barium	166		mg/kg dry	1.11	138	40.1	91	80-120		
Reference (1318009-SRM1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Nickel	57.6		mg/kg wet	1.00	64.2		90	84.38-115.6		
								2		
Zinc	93.4		mg/kg wet	1.00	102		91	81.86-117.6		
Managhton				4.50			0.7	5		
Vanadium	50.4		mg/kg wet	1.50	52.2		97	75.48-124.0 3		
Thallium	72.0		mg/kg wet	3.00	72.2		100	81.25-118.7		
Thailian.	. 2.0		mg/kg wot	0.00	,		100	5		
Selenium	39.5		mg/kg wet	1.50	43.1		92	79.98-119.9		
								1		
Lead	61.4		mg/kg wet	1.50	68.2		90	83.82-116.9		
								1		
Copper	40.1		mg/kg wet	1.00	40.2		100	83.77-116.1		
Chromium	60.0		mg/kg wet	1.00	62.7		96	81.6-117.6		
Cadmium	28.6		mg/kg wet	0.500	30.3		94	83.11-116.8		
Popullium	45.0		ma//.at	0.500	40.0		00	8		
Beryllium	45.3		mg/kg wet	0.500	49.3		92	83.93-115.9 7		
Arsenic	84.5		mg/kg wet	1.50	91.3		93	, 82.97-117.5		
	04.0		mg/ng wot		01.0		50	8		
Silver	27.9		mg/kg wet	1.50	30.7		91	66.23-133.7		
			: -					7		
Antimony	21.3		mg/kg wet	5.00	53.2		40	25-218.86		
Barium	69.4		mg/kg wet	1.00	71.7		97	83.21-117.4		
								8		
Reference (1318009-SRM2)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1318009 - SW846 3050B										
Reference (1318009-SRM2)					Pre	pared: 30-Jul-	13 Analyzed:	: 31-Jul-13		
Arsenic	88.3		mg/kg wet	1.50	91.7		96	82.97-117.5		
								8		
Lead	63.4		mg/kg wet	1.50	68.5		93	83.82-116.9		
Silver	28.4		mg/kg wet	1.50	30.9		92	1 66.23-133.7		
Silvei	20.4		mg/kg wet	1.50	30.9		92	7		
Beryllium	47.4		mg/kg wet	0.500	49.5		96	83.93-115.9		
								7		
Cadmium	29.2		mg/kg wet	0.500	30.4		96	83.11-116.8		
Chromium	62.0		ma/ka wat	1.00	63.0		98	8 81.6-117.6		
Nickel	59.4		mg/kg wet mg/kg wet	1.00	64.5		92	84.38-115.6		
Norei	33.4		mg/kg wet	1.00	04.5		32	2		
Antimony	23.1		mg/kg wet	5.00	53.4		43	25-218.86		
Selenium	41.4		mg/kg wet	1.50	43.3		96	79.98-119.9		
								1		
Thallium	75.2		mg/kg wet	3.00	72.5		104	81.25-118.7 5		
Vanadium	52.5		mg/kg wet	1.50	52.4		100	5 75.48-124.0		
variadium	32.3		mg/kg wet	1.50	32.4		100	3		
Zinc	97.8		mg/kg wet	1.00	103		95	81.86-117.6		
								5		
Copper	40.8		mg/kg wet	1.00	40.3		101	83.77-116.1		
Barium	71.0		mg/kg wet	1.00	72.0		99	83.21-117.4		
								8		
Batch 1318010 - EPA200/SW7000 Series										
Blank (1318010-BLK1)	. 0 0005			0.0005	<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	: 31-Jul-13		
Mercury	< 0.0285		mg/kg wet	0.0285						
<u>Duplicate (1318010-DUP1)</u>		1.000	Source: SB		<u>Pre</u>		13 Analyzed:	: 31-Jul-13		
Mercury	0.0016	J,QR8	mg/kg dry	0.0296		0.0048			101	20
Matrix Spike (1318010-MS1)			Source: SB				13 Analyzed:			
Mercury	0.254		mg/kg dry	0.0302	0.210	0.0048	119	75-125		
Matrix Spike Dup (1318010-MSD1)			Source: SB				13 Analyzed:			
Mercury	0.266		mg/kg dry	0.0310	0.215	0.0048	121	75-125	5	20
Post Spike (1318010-PS1)			Source: SB				13 Analyzed:			
Mercury	0.233		mg/kg dry	0.0300	0.208	0.0048	109	80-120		
Reference (1318010-SRM1)					<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	: 31-Jul-13		
Mercury	3.05	D	mg/kg wet	0.600	3.15		97	71.67-128.6		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1318008 - EPA200/SW7000 Series										
Blank (1318008-BLK1)					<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Mercury	< 0.00020		mg/l	0.00020						
LCS (1318008-BS1)					Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Mercury	0.00492		mg/l	0.00020	0.00500		98	85-115		
<u>Duplicate (1318008-DUP1)</u>			Source: S	B73837-10	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Mercury	< 0.00020		mg/l	0.00020		BRL				20
Matrix Spike (1318008-MS1)			Source: S	B73837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Mercury	0.00505		mg/l	0.00020	0.00500	BRL	101	80-120		
Matrix Spike Dup (1318008-MSD1)			Source: S	B73837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Mercury	0.00483		mg/l	0.00020	0.00500	BRL	97	80-120	4	20
Post Spike (1318008-PS1)			Source: S	B73837-08	Pre	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Mercury	0.00495		mg/l	0.00020	0.00500	BRL	99	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1317764 - General Preparation										
Duplicate (1317764-DUP1)			Source: SE	<u>373837-07</u>	Pre	pared & Analy	zed: 26-Jul-13			
% Solids	76.1		%			89.6			16	20

Subcontracted Analyses - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %REC	%REC Limits	RPD	RPE Limi
atch 72963 - SW3545A									
LCS (LCS-72963)					Pre	pared: 30-Jul-13 Analyzed:	31-Jul-13		
Naphthalene	141.0		ug/Kg	66	166.7	84.6	19-102		
2-Methylnaphthalene	140.9		ug/Kg	66	166.7	84.6	19-112		
Acenaphthylene	145.2		ug/Kg	66	166.7	87.1	23-134		
Acenaphthene	125.8		ug/Kg	66	166.7	75.5	33-113		
Fluorene	126.8		ug/Kg	66	166.7	76.1	32-122		
Phenanthrene	141.2		ug/Kg	66	166.7	84.7	38-108		
Anthracene	127.3		ug/Kg	66	166.7	76.4	35-114		
Fluoranthene	151.3		ug/Kg	66	166.7	90.8	41-117		
Pyrene	140.7		ug/Kg	66	166.7	84.4	39-119		
Benzo(a)anthracene	149.1		ug/Kg	66	166.7	89.5	39-111		
Chrysene	147.7		ug/Kg	66	166.7	88.6	36-112		
Benzo(b)fluoranthene	130.5		ug/Kg	66	166.7	78.3	39-128		
Benzo(k)fluoranthene	159.2		ug/Kg	66	166.7	95.5	30-133		
Benzo(a)pyrene	143.0		ug/Kg	66	166.7	85.8	43-119		
Indeno(1,2,3-cd)pyrene	176.9		ug/Kg	66	166.7	106	48-119		
Dibenzo(a,h)anthracene	149.4		ug/Kg	66	166.7	89.6	48-121		
Benzo(g,h,i)perylene	158.5		ug/Kg	66	166.7	95.1	45-116		
Surrogate: Benzo(e)pyrene-d12	159.2		ug/Kg		166.7	95.5	32-153		
Matrix Spike (M1295-04AMS)			Source: SE	373837-07		pared: 30-Jul-13 Analyzed:			
Naphthalene	414.3	S	ug/Kg	76	193.1	215	19-102		
2-Methylnaphthalene	240.2	s	ug/Kg	76	193.1	124	19-102		
Acenaphthylene	868.2	s	ug/Kg ug/Kg	76	193.1	450	23-134		
Acenaphthene	235.5	s	ug/Kg	76	193.1	122	33-113		
Fluorene	304.1	s	ug/Kg ug/Kg	76 76	193.1	157	32-122		
Phenanthrene	1868	s		76 76	193.1	968	38-108		
Anthracene	879.9	s	ug/Kg	76 76	193.1	456	35-108		
Fluoranthene		s	ug/Kg	76 76		1270			
	3560	S	ug/Kg		193.1		41-117		
Pyrene	3464	S	ug/Kg	76 70	193.1	1230	39-119		
Benzo(a)anthracene	2842	S	ug/Kg	76 70	193.1	1470	39-111		
Chrysene	2861	S	ug/Kg	76 70	193.1	1480	36-112		
Benzo(b)fluoranthene	4076		ug/Kg	76 70	193.1	1620	39-128		
Benzo(k)fluoranthene	1743	S	ug/Kg	76 7 0	193.1	903	30-133		
Benzo(a)pyrene	3392	S	ug/Kg	76	193.1	1760	43-119		
Indeno(1,2,3-cd)pyrene	2219	S	ug/Kg	76 7 0	193.1	1150	48-119		
Dibenzo(a,h)anthracene	627.7	S	ug/Kg	76	193.1	325	48-121		
Benzo(g,h,i)perylene	2023	S	ug/Kg	76	193.1	1050	45-116		
Surrogate: Benzo(e)pyrene-d12	223.2		ug/Kg		193.1	116	32-153		
Matrix Spike Dup (M1295-04AMSD)			Source: SE	<u>373837-07</u>	Pre	pared: 30-Jul-13 Analyzed:	31-Jul-13		
Naphthalene	176.3	R	ug/Kg	75	190.6	92.5	19-102	80.6	40.0
2-Methylnaphthalene	174.2		ug/Kg	75	190.6	91.4	19-112	31.9	40.0
Acenaphthylene	231.7	R	ug/Kg	75	190.6	122	23-134	116	40.0
Acenaphthene	195.8		ug/Kg	75	190.6	103	33-113	18.4	40.0
Fluorene	200.9	R	ug/Kg	75	190.6	105	32-122	40.9	40.0
Phenanthrene	464.9	S, R	ug/Kg	75	190.6	244	38-108	120	40.0
Anthracene	261.3	S, R	ug/Kg	75	190.6	137	35-114	108	40.0
Fluoranthene	555.7	S, R	ug/Kg	75	190.6	0	41-117	146	40.0
Pyrene	585.5	S, R	ug/Kg	75	190.6	0	39-119	142	40.0
Benzo(a)anthracene	370.0	S, R	ug/Kg	75	190.6	194	39-111	154	40.0
Chrysene	351.7	S, R	ug/Kg	75	190.6	184	36-112	156	40.0
Benzo(b)fluoranthene	397.4	S, R	ug/Kg	75	190.6	0	39-128	164	40.0
Benzo(k)fluoranthene	270.3	S, R	ug/Kg	75	190.6	142	30-133	146	40.0

Subcontracted Analyses - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 72963 - SW3545A										
Matrix Spike Dup (M1295-04AMSD)			Source: SI	373837-07	<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Benzo(a)pyrene	355.0	S, R	ug/Kg	75	190.6		186	43-119	162	40.0
Indeno(1,2,3-cd)pyrene	334.9	S, R	ug/Kg	75	190.6		176	48-119	148	40.0
Dibenzo(a,h)anthracene	219.8	R	ug/Kg	75	190.6		115	48-121	96.3	40.0
Benzo(g,h,i)perylene	272.7	S, R	ug/Kg	75	190.6		143	45-116	152	40.0
Surrogate: Benzo(e)pyrene-d12	214.5		ug/Kg		190.6		113	32-153		
Blank (MB-72963)					<u>Pre</u>	pared: 30-Jul-	13 Analyzed:	31-Jul-13		
Naphthalene	< 66	U	ug/Kg	66				-		
2-Methylnaphthalene	< 66	U	ug/Kg	66				-		
Acenaphthylene	< 66	U	ug/Kg	66				-		
Acenaphthene	< 66	U	ug/Kg	66				-		
Fluorene	< 66	U	ug/Kg	66				-		
Phenanthrene	< 66	U	ug/Kg	66				-		
Anthracene	< 66	U	ug/Kg	66				-		
Fluoranthene	< 66	U	ug/Kg	66				-		
Pyrene	< 66	U	ug/Kg	66				-		
Benzo(a)anthracene	< 66	U	ug/Kg	66				-		
Chrysene	< 66	U	ug/Kg	66				-		
Benzo(b)fluoranthene	< 66	U	ug/Kg	66				-		
Benzo(k)fluoranthene	< 66	U	ug/Kg	66				-		
Benzo(a)pyrene	< 66	U	ug/Kg	66				-		
Indeno(1,2,3-cd)pyrene	< 66	U	ug/Kg	66				-		
Dibenzo(a,h)anthracene	< 66	U	ug/Kg	66				-		
Benzo(g,h,i)perylene	< 66	U	ug/Kg	66				-		
Surrogate: Benzo(e)pyrene-d12	172.0		ug/Kg		166.7		103	32-153		

Semivolatile Organic Compounds by GC - Pesticide Breakdown Report

Analyta(a)	Calurer	% Breakdown	T inv:4
Analyte(s)	Column	% Breakdown	Limit
Batch S309014			
Performance Mix (S309014-PEM1)			
4,4'-DDT (p,p')	1	4.7	15.0
Endrin	1	9.0	15.0
4,4'-DDT (p,p')	2	4.2	15.0
Endrin	2	9.6	15.0
Performance Mix (S309014-PEM2)			
4,4'-DDT (p,p')	1	2.6	15.0
Endrin	1	4.4	15.0
4,4'-DDT (p,p')	2	2.7	15.0
Endrin	2	5.3	15.0
Batch S309027			
Performance Mix (S309027-PEM1)			
4,4'-DDT (p,p')	1	2.6	15.0
Endrin	1	4.4	15.0
4,4'-DDT (p,p')	2	2.7	15.0
Endrin	2	5.3	15.0
Performance Mix (S309027-PEM2)			
4,4'-DDT (p,p')	1	3.4	15.0
Endrin	1	1.9	15.0
4,4'-DDT (p,p')	2	2.9	15.0
Endrin	2	3.8	15.0

Notes and Definitions

D Data reported from a dilution

P Difference between the two GC columns is greater than 40%.

QM1 The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

QM8 The spike recovery exceeded the QC control limits for the MS and/or MSD. The batch was accepted based upon

acceptable PS and /or LCS recovery.

QR6 The RPD exceeded the QC control limits; however precision is demonstrated with acceptable RPD values for MS/MSD.

QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The

batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

R Relative percent difference is outside of the control limit

S Spike recovery falls outside of the control limit

U Compound not detected below method detection limit at or above the MRL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Nicole Leja

CHAIN OF CUSTODY RECORD

_		
1 1 1 1 1 1 1	Spec	
7 1 10	ial Har	
O Language down	Special Handling:	()
1	N	100
	1	(

☐ Rush TAT - Date Needed:	Standard TAT -7 to 10 business day	Special Handling:
	lays	N

- Min. 24-hour notification needed for rushes. All TATs subject to laboratory approval.
- Samples disposed of after 60 days unless otherwise instructed.

Report To: Att Com	Invoice To:	e To: Say		Project No.: 6022515.5	
0				Site Name: Granding	tigh School
				Location: German	State: 2
Project Mgr. Makolm Brode	C 3000 P.O. No.:		RQN:	Sampler(s): M. Rood +	S. Bady
S2O ₃		6=Ascorbic Acid 7=	7=CH ₃ OH	List preservative code below:	QA/QC Reporting Notes:
DW=Drinking Water GW=Groundwater	ater WW=Wast		Containers:	Analyses:	MA DEP MCP CAM Report: Yes 🗆 No 🖪
1	IS		lass	s s	CT DPH RCP Report: Yes INO ID QA/QC Reporting Level Standard ID NO OC ID DOA*
G=Grab C=Composite	posite	OA Vi	lear G	- Su : All ideal:	□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full*
Lab Id: Sample Id:	Date: Time:	Type Matrix # of V0 # of A1	# of Cl # of Pl	Pattice RER M	☐ TIER II* ☐ TIER IV* ☐ Other ☐ State-specific reporting standards:
- जुर	7/25/13 0900	6 XI 4		× × ×	
1 62 Sw . BBUS -1 - 672517-1	7/25/13 0900	6 SW 2		XXX	S
0	Ü	6 X 1 9		××××	
OL SW-BBUS-2-07813-1	2/23/13 1000	6 SW 2	1	XXX	2
05 5ED - 8BUS - 2 - 57250-2	7/25/13 1000	h 1x o		× × ×	
O6 5w- 8803 -2-07513-2	ľ	6 SW 2		×××	
50 SED - BRUX - 3 - 0728/3-1		6 X1 . 12		* * * *	ms/msD
08 Sw. 8605-3-072813-1		6 Sw 6	W	* * *	MS/MSD
09 SEO - 0805 .4 0725 13-11	7/25/13 1100	6 ×1 4		× × ×	7
151526-4-5088 - ms OI	7/25/13 1100	6 Sw 2		× :	
-	eceive	Date:	Time: *	Temp ⁶ C FDD Format 001115	015
	tal	7/25/3	5	I Do I orman	2
A CONTRACTOR OF THE PROPERTY O	900	2/10/5/13	2000	E-mail to Mallant Helle	1 stelle (alan , con
0				tions million	it o afrew com
				Condition upon receipt:	
エハグラン					

30	20
010	11
0	1
	00/000

CHAIN OF CUSTODY RECORD

☐ Rush TAT - Date Needed: Special Handling:

· All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.

Featuring HANIBAL TECHNOLOGY	Page	Page 2 of 2		· Sample otherw	Samples disposed of otherwise instructed.	Samples disposed of after 60 days unless otherwise instructed.
Report To: Afican						
SOO Embrosse for	invoice 10: Serve.		Project No.: 60725155	60225155		
Rocky Hill of			Site Name:	Site Name: Cremum High School	High S	ticel
,			Location:		(State:
Telephone #: 860 263 5800	P.O. No.:	RON:	Sampler(s): M. Royl + 5. Republished	M. Road	7.8	Bret

Project Mgr.

Condition upon receipt: Ambient Ploed Refrigerated DI VOA Frozen Soil Jar Frozen	(a'/il.v., 5/e) Condition upon receipt: ☐ Ambient		2710	13	3				BOR	45/0/
Malida bedly a allan con	1		1:354	13	7/25		3		lex	.)
v	EDD Format	Temp°C	Time:	- ie:	/Date		Received by:		Relinquished by:	Relir
	V		٠	*,	b.	1				
	Y									
Gron		×.,		2	N.				Trip Blook	472
Š	× × ×	×	-	w	×	6	1130	4/25/13	Equation Black	3837-11
Other State-specific reporting standards:	PCBS RSR	VOC,	# of C		Matri	Туре	Time:	Date:	Sample Id:	Lab Id:
□ NYASPA* □ NYASPB* □ NJ Reduced* □ NJ Full* □ TUEB U* □ TUEB W/*	Metal		Clear G	OA Vi				C=Composite	G=Grab C=	
QA/QC Reporting Level Standard □ No OC □ DOA*	3		lass				X3=		DI WHEN X2=	X1 = 0
CT DPH RCP Report: Ye s 🗷 No 🗆				3			SL=Sludge A=Air	SO=Soil SL=	O=Oil SW= Surface Water S(O=Oil SW=
MA DEP MCP CAM Report: Yes TI No	Analyses:	•	Containers:	Cor			WW=Wastewater		DW=Drinking Water GW=Groundwater	DW=Drinkin
* additional charges may apply	4	7/61			12=		$10=H_3PO_4$ $11=$			8= NaHSO ₄
QA/QC Reporting Notes:	List preservative code below:	List	7=CH ₃ OH		6=Ascorbic Acid	6=Ascc	4=HNO ₃ 5=NaOH		$32O_3$ 2=HCl $3=H_2SO_4$	$1=Na_2S2O_3$

CHAIN OF CUSTODY RECORD

*Standard	
TAT - 7- to 10 business days	Special Handling:
days	5

☐ Rush TAT - Date Needed:

· All TATs subject to laboratory approval.

· Samples disposed of after 60 days unless Min. 24-hour notification needed for rushes. otherwise instructed.

(oil) in so It o miles for			3 5	Todo	1 -		3.	14	2	
male of book is a com com	E-mail to Male de		1	-			2		40	
			1:35	7	7/25		9		1	
2	EDD Format	Temp°C	Time:	ıte:	/Date		Received by:	Re	Relinquished by:	
		2				1				
	- E				ķ.					
						133				
				SIGN 4						
10000000										
1000 5:04		\$		102.44						
HOLOCATION NO										
CUN TRABBILLES)			(S)-10					9	2
HOUD/DO NOT		×		2		177			12 Trio Blow	6
	× × ×	X		w	×	6	1130	H25/13	11 Equationent Black	237-
State-specific reporting standards:	Pes	Vo	-	-	Ma	Тур	Time:	Date:	Id: Sample Id:	Lab Id:
TIER II*	tic. 85		f Cle			oe .				
☐ NY ASP A* ☐ NY ASP B*	de							C=Composite	G=Grab C=	
QA/QC Reporting Level ■ Standard □ No QC □ DQA*			Glass	Vial s Glas			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		O Wines AL-	>1-
CI DPH RCP Report: Yes No L				SS			idge A=Air	SU=Soil SL=Sludge	SW= Surface Water	0=01
MA DEP MCP CAM Report: Yes 🗆 No	Analyses:		Containers:	Con			S	2	Drinking Water GW=G	DW=I
* additional charges may apply	7	7/4			12=		9		9= Deioni	8=
QA/QC Reporting Notes:	List preservative code below:	L	7=CH ₃ OH		rbic Ac	6=Ascorbic Acid	3 5=NaOH	3=H ₂ SO ₄ 4=HNO ₃	S2O ₃ 2=HC1	
+ 5 Bernett	Sampler(s): M. Roxl	S	Z: 	RQN:			P.O. No.:	Biehr	Nest of m	Project Mgr.
State: 4	Location: Chenwish .									3
High School	Site Name: Crawway 1	S						7	4	
	Project No.: 6072515'S	P			ten.		Invoice To:	97	To: AECOM SOO ENERGYSSI	Report To:

Report Date: 15-Oct-14 16:52

☑ Final Report☐ Re-Issued Report☐ Revised Report

Laboratory Report

AECOM Environment 500 Enterprise Drive, Suite 1A Rocky Hill, CT 06067

Attn: Malcolm Beeler

Project: Greenwich HS - Greenwich, CT

Project #: 60225155

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97408-01	SW-DOWNSTREAM-01-10-02-14	Surface Water	02-Oct-14 10:26	02-Oct-14 18:30
SB97408-02	SW-DOWNSTREAM-02-10-01-14	Surface Water	01-Oct-14 17:25	02-Oct-14 18:30
SB97408-03	SW-DOWNSTREAM-03-10-01-14	Surface Water	01-Oct-14 16:45	02-Oct-14 18:30
SB97408-04	SW-DOWNSTREAM-04-10-01-14	Surface Water	01-Oct-14 15:52	02-Oct-14 18:30
SB97408-05	SW-DOWNSTREAM-05-10-01-14	Surface Water	01-Oct-14 14:55	02-Oct-14 18:30
SB97408-06	SW-DOWNSTREAM-06-10-01-14	Surface Water	01-Oct-14 11:56	02-Oct-14 18:30
SB97408-07	SW-DOWNSTREAM-01-10-02-14	Surface Water	02-Oct-14 10:26	02-Oct-14 18:30
	-FD			
SB97408-08	SW-DOWNSTREAM-01-10-02-14	Surface Water	02-Oct-14 12:10	02-Oct-14 18:30
	-FR			

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 32 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Reasonable Confidence Protocols Laboratory Analysis QA/QC Certification Form

Laboratory Name: Spectrum Analytical, Inc.

Client: AECOM Environment - Rocky Hill, CT

Project Location: Greenwich HS - Greenwich, CT

Project Number: 60225155

Sampling Date(s):

Laboratory Sample ID(s):

10/1/2014 through 10/2/2014 SB97408-01 through SB97408-08

RCP Methods Used:

EPA 245.1/7470A SW846 6010C SW846 8081B SW846 8270D SIM

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ '	Yes	N	o
1A	Were the method specified preservation and holding time requirements met?	✓ '	Yes	N	o
1B	<u>VPH and EPH methods only</u> : Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	,	Yes	N	o
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	✓ '	Yes	N	o
3	Were samples received at an appropriate temperature?	√	Yes	N	О
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved?		Yes	✓ N	o
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?		Yes Yes	✓ No	
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	√	Yes	N	0
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?		Yes	✓ N	o

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for obtaining the information contained in this analytical report, such information is accurate and complete.

Nicole Leja Laboratory Director

Micole Leja

Date: 10/15/2014

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 0.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Required site-specific Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be requested by the client and sufficient sample must be submitted for the additional analyses. Samples submitted with insufficient volume/weight will not be analyzed for site specific MS/MSD, however a batch MS/MSD may be analyzed from a non-site specific sample.

CTDEP has published a list of analytical methods which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of decisions being made utilizing the Reasonable Confidence Protocol (RCP). "Reasonable Confidence" can be established only for those methods published by the CTDEP in the RCP guidelines. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

The CTDEP RCP requests that "all non-detects and all results below the reporting limit are reported as ND (Not Detected at the Specified Reporting Limit)". All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

If no reporting limits were specified or referenced on the chain-of-custody the laboratory's practical quantitation limits were applied.

Tetrachloro-m-xylene is recommended as a surrogate by the CTDEP RCP for the following SW846 Methods 8081, 8082 and 8151. Spectrum Analytical, Inc. uses Tetrachloro-m-xylene as the Internal Standard for these methods and Dibromooctaflourobiphenyl as the surrogate.

For this work order, the reporting limits have not been referenced or specified.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Sam	1	 _

SW846 6010C

Samples:

SB97408-05 *SW-DOWNSTREAM-05-10-01-14*

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97408-06 SW-DOWNSTREAM-06-10-01-14

MRL raised to correlate to batch QC reporting limits.

Zino

SB97408-07 *SW-DOWNSTREAM-01-10-02-14-FD*

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97408-08 SW-DOWNSTREAM-01-10-02-14-EB

MRL raised to correlate to batch QC reporting limits.

Zinc

SW846 8081B

Samples:

SB97408-02 *SW-DOWNSTREAM-02-10-01-14*

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

Decachlorobiphenyl (Sr)

SW846 8270D SIM

Laboratory Control Samples:

1423547 BS

Naphthalene percent recovery 37 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

SW-DOWNSTREAM-01-10-02-14

SW-DOWNSTREAM-01-10-02-14-EB

SW-DOWNSTREAM-01-10-02-14-FD

SW-DOWNSTREAM-02-10-01-14

SW-DOWNSTREAM-03-10-01-14

SW-DOWNSTREAM-04-10-01-14

SW-DOWNSTREAM-05-10-01-14

SW-DOWNSTREAM-06-10-01-14

Samples:

S411556-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Indeno (1,2,3-cd) pyrene (-25.4%)

SW846 8270D SIM

Samples:

S411556-CCV1

This affected the following samples:

1423547-BLK2 1423547-BS2

1423547-BSD2

SW-DOWNSTREAM-01-10-02-14-FD

SW-DOWNSTREAM-02-10-01-14

SW-DOWNSTREAM-03-10-01-14

SW-DOWNSTREAM-04-10-01-14

SW-DOWNSTREAM-05-10-01-14

SW-DOWNSTREAM-06-10-01-14

S411593-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Fluorene (21.9%)

This affected the following samples:

SW-DOWNSTREAM-01-10-02-14

SW-DOWNSTREAM-01-10-02-14-EB

Sample Acceptance Check Form

Client:	AECOM Environment - Rocky Hill, CT
Project:	Greenwich HS - Greenwich, CT / 60225155
Work Order:	SB97408
Sample(s) received on:	10/2/2014

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>Y es</u>	<u>No</u>	N/A
1.	Were custody seals present?		\checkmark	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	√		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
0.	Did sample container labels agree with Chain of Custody document?	✓		
1.	Were samples received within method-specific holding times?	\checkmark		

	<u>lentification</u> VNSTREAM-01-10-02-14 -01	1			<u>Project #</u> 25155		<u>Matrix</u> Surface W	·	ection Date 2-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by	GCMS											
SVOCs b													
	by method SW846 3510C	='		_									
83-32-9	Acenaphthene	< 0.050		µg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	10-Oct-14	ML/	1423547	X
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1		"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	ıı .	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	II .	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1		"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"	"	"	"	Χ
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Χ
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Χ
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Χ
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"	Χ
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Χ
Surrogate	recoveries:												
205440-82-0	Benzo (e) pyrene-d12	72			30-13	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by	GC											
Organoch	lorine Pesticides												
	by method SW846 3510C	<u>'</u>											
319-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B		11-Oct-14	TG	1423604	X
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
60-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
72-20-8	Endrin	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Х
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.002	1	··	"	"	"	"	X
7421-93-4	Endrin aldehyde	< 0.004		μg/l	0.004	0.002	1	··	"	"	"	"	X
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	··	"	"	"	"	X
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	u	"	"	"	"	X
8001-35-2	Toxaphene	< 0.053		μg/l	0.053	0.048	1	m m	"	"	"		Χ

-	<u>lentification</u> V NSTREAM-01-10-02-14 01				<u>Project #</u> 25155		<u>Matrix</u> Surface Wa	'	ection Date 2-Oct-14 10			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC .											
Organoch	lorine Pesticides												
Prepared	by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	60			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	55			30-15	50 %		"	"	u	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	37			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	34			30-15	50 %		"	II	н	"	"	
Total Meta	als by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	BJW	1423834	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	"	"	"	Χ
7440-39-3	Barium	0.106		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Х
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Х
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0022	1	"	"	"	"	"	Х
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Х
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	u	"	"	"	"	Х
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	"	"	"	"	"	Х
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	u	"	"	"	"	Х
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	ıı	"	"	"		Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	ıı .	"	"	"		Х
Total Meta	als by EPA 200 Series Metho	ods		-									
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	09-Oct-14	10-Oct-14	SMR	1423835	Х

SB97408-	dentification VNSTREAM-02-10-01-14 -02	1			<u>Project #</u> 25155		<u>Matrix</u> Surface W		ection Date -Oct-14 17			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by													
	by method SW846 3510C	='											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	09-Oct-14	ML/	1423547	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	"	"		"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1	"	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"	"	"	"	Χ
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	"		"	"	Χ
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	"		"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1		"	"	"		
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1		"	"	"		Х
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1		"	"	"		Х
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	· ·	"	"	"	"	Х
Surrogate	recoveries:												
_	Benzo (e) pyrene-d12	77			30-13	20 %		"	"		"	"	
		77 CC			00.10	. , .							
Semivolati	ile Organic Compounds by				00 10								
Semivolati Organoch		GC			55.15								
Semivolati Organoch Prepared	ile Organic Compounds by	GC		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	X
Semivolati Organoch Prepared 319-84-6	ile Organic Compounds by alorine Pesticides by method SW846 3510C	G C		μg/l μg/l			1 1	SW846 8081B	07-Oct-14	11-Oct-14	TG "	1423604	x x
Semivolati Organoch Prepared 319-84-6 319-85-7	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC	GC 2 < 0.002			0.002	0.002							
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC	GC < 0.002 < 0.002		μg/l μg/l	0.002 0.002	0.002 0.002	1				"	"	Х
Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC	GC < 0.002 < 0.002 < 0.002		μg/l μg/l μg/l	0.002 0.002 0.002	0.002 0.002 0.002	1 1				"	"	X X
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	GC< 0.002< 0.002< 0.002< 0.002		μg/l μg/l	0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002	1 1 1				" "	"	X X X
Semivolati Organoch Prepared 319-84-6 319-86-8 58-89-9 76-44-8 309-00-2	ile Organic Compounds by normalorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor	GC< 0.002< 0.002< 0.002< 0.002< 0.002< 0.002		hâ\I hâ\I hâ\I	0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002	1 1 1				" " "		X X X
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3	ile Organic Compounds by alorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin	GC< 0.002< 0.002< 0.002< 0.002< 0.002< 0.002< 0.002		hā\l hā\l hā\l hā\l	0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1				" " " " " " " " " " " " " " " " " " " "		X X X X
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide	 GC < 0.002 		hā\I hā\I hā\I hā\I hā\I	0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I	 GC < 0.002 		hā/l hā/l hā/l hā/l hā/l	0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	 GC < 0.002 		hā\l hā\l hā\l hā\l hā\l hā\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin	 GC < 0.002 < 0.004 		hā\l hā\l hā\l hā\l hā\l hā\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1				" " " " " " " " " "		x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II	GC < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1				" " " " " " " " " " " " "		x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p')	GC < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003	1 1 1 1 1 1 1 1 1 1				" " " " " " " " " " " " " "		x x x x x x x x x x x x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate	 GC < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " "		x x x x x x x x x x x x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	 GC < 0.002 < 0.004 		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " "		x x x x x x x x x x x x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3	ile Organic Compounds by alorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor	GC < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor Endrin ketone	 GC < 0.002 < 0.004 		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x
Semivolati Organoch Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5 53494-70-5	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan III 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor Endrin ketone Endrin aldehyde	 GC < 0.002 < 0.004 <		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x
Semivolati Organoch	ile Organic Compounds by nlorine Pesticides by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor Endrin ketone	 GC < 0.002 < 0.004 		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x

	lentification VNSTREAM-02-10-01-14 02				<u>Project #</u> 25155		Matrix Surface Wa		ection Date 1-Oct-14 17			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Organoch	lorine Pesticides												
Prepared	by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	X
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	35			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	62			30-15	50 %		"	н	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	20	SGC		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	38			30-15	50 %		"	н	"	"	"	
Total Meta	als by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	BJW	1423834	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	"	"	"	Х
7440-39-3	Barium	0.119		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0022	1	"	"	"	"	"	Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Х
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	u	"	"	"	u.	Х
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	u	"	"	"	u.	Х
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	ıı	"	"	"	"	Х
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	II .	"		"	"	Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	II .	"	"	"	"	Х
Total Meta	als by EPA 200 Series Metho	ods		-									
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA	09-Oct-14	10-Oct-14	SMR	1423835	Х

245.1/7470A

SW-DOV	dentification VNSTREAM-03-10-01-14	4			<u>Project #</u> 5155		Matrix Surface W	-	ection Date 1-Oct-14 16			ceived Oct-14	
SB97408-	-03 Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prenared	Analyzed	Analyst	Ratch	Cert
	• ,,				- RDE	- IMDE	Dimiton	memou neg.	Териген	- Imary cu	2 Trialy St	Buien	
	ile Organic Compounds by	GCMS											
SVOCs by Prepared	<u>y SiM</u> by method SW846 3510C	<u>;</u>											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	10-Oct-14	ML/	1423547	×
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Χ
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1	"	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	II .	"	"	"	Χ
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	II .	"	"	"	Χ
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	II .	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	X
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"	X
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Χ
Surrogate i	recoveries:												
_	Benzo (e) pyrene-d12	79			30-13	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by	GC											
	nlorine Pesticides												
	by method SW846 3510C	<u> </u>											
319-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	X
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
60-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-20-8	Endrin	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Χ
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1	II .	II .	"	"	"	Χ
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.002	1	II .	u u	"	"	"	Χ
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.002	1	II .	"	"	"	"	Χ
7421-93-4	Endrin aldehyde	< 0.004		μg/l	0.004	0.002	1	II .	"	"	"	"	Χ
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	II .	"	"	"	"	Χ
	Toxaphene	< 0.054		μg/l	0.054	0.048	1	_	"				Χ

-	lentification VNSTREAM-03-10-01-14 -03			_	<u>Project #</u> 25155	;	Matrix Surface Wa	'	ection Date 1-Oct-14 16			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	lle Organic Compounds by C	GC .											
Organoch	lorine Pesticides												
	by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	51			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	66			30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	36			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	39			30-15	50 %		"	"	"	"	"	
Total Meta	als by EPA 200/6000 Series I	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	BJW	1423834	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	"	"	"	Х
7440-39-3	Barium	0.122		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7440-50-8	Copper	0.0056		mg/l	0.0050	0.0022	1	"	"	"	"	"	Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Х
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	n .	"	•	"	"	Х
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	"	"	"	"	"	Х
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	u	"	"	"	"	Х
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	ıı	"	"	"		Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	ıı .	"	"	"	"	Х
Total Meta	als by EPA 200 Series Metho	ods		-									
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	09-Oct-14	10-Oct-14	SMR	1423835	Х

	dentification			Client I	Project #		Matrix	Colle	ection Date	/Time	<u>Re</u>	ceived	
SW-DOV SB97408-	VNSTREAM-04-10-01-14	4		6022	5155		Surface W	ater 01	-Oct-14 15	:52	02-	Oct-14	
				W.T. *.		1/0/	Diff. d	W 4 1 1 P C					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by													
83-32-9	by method SW846 3510C	<u><</u> < 0.050		ug/l	0.050	0.008	1	SW846 8270D	06 Oct 14	10-Oct-14	ML/	1423547	~
03-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.006	1	SW646 6270D SIM	06-OCI-14	10-001-14	IVIL/	1423547	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1		"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1		"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1		"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1		"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1		"	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Χ
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"	"		"	Χ
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1		"	"	"	"	Х
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1		"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Х
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"	Х
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
_	Denzo (e) pyrene-d12	74			30-13	0 %		"	"	"		"	
	ile Organic Compounds by												
	lorine Pesticides												
	by method SW846 3510C	<u> </u>											
319-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Χ
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
60-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-20-8	Endrin	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Χ
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
7421-93-4	Endrin aldehyde	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	Х
0000 011	3			M9	0.002	0.002	1						, ,

	<u>lentification</u> VNSTREAM-04-10-01-14 ₋ 04				<u>Project #</u> 25155	;	Matrix Surface W		ection Date 1-Oct-14 15			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolati	le Organic Compounds by C	GC .											
	lorine Pesticides												
	by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Х
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	49			30-15	0 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	58			30-15	60 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	36			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	39			30-15	60 %		"	"	"	"	"	
Total Meta	als by EPA 200/6000 Series I	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	BJW	1423834	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	u	•	"	Χ
7440-39-3	Barium	0.123		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0022	1	"	"	"	"	"	Х
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Х
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Х
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	"	"	"	"	"	Х
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	"	"	"	"	"	Х
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	"	"	"	"	"	Х
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	n .	"	"	"	"	Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	"		"	"	"	Х
Total Meta	als by EPA 200 Series Metho	ods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	09-Oct-14	10-Oct-14	SMR	1423835	Х

SB97408-	dentification VNSTREAM-05-10-01-14 -05	4			<u>Project #</u> 25155		Matrix Surface W		-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by													
	by method SW846 3510C	- '											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	10-Oct-14	ML/	1423547	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"		"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1	"	"	"	"	"	Χ
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1		"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1		"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Х
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"		"	"	Х
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	"				Х
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"		Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"		Х
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1		"	"	"		
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"		Х
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"		Х
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"		Х
Surrogata	roccucrico:												
Surrogate r	Benzo (e) pyrene-d12	84			30-13	0 %		,,	"		"	,,	
					30-73	0 /0							
	ile Organic Compounds by	GC											
	Jorina Pasticidas												
	nlorine Pesticides by method SW846 35100	<u>}</u>											
Prepared	nlorine Pesticides by method SW846 3510C alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Х
	by method SW846 3510C				0.002 0.002	0.002 0.002	1 1	SW846 8081B	07-Oct-14	11-Oct-14	TG "	1423604	X X
Prepared 319-84-6 319-85-7	by method SW846 3510C alpha-BHC	< 0.002		µg/l µg/l µg/l									
Prepared 319-84-6 319-85-7 319-86-8	by method SW846 3510C alpha-BHC beta-BHC	< 0.002 < 0.002		μg/l	0.002	0.002	1				"	"	Х
Prepared 319-84-6 319-85-7 319-86-8 58-89-9	by method SW846 3510C alpha-BHC beta-BHC delta-BHC	< 0.002 < 0.002 < 0.002		μg/l μg/l	0.002 0.002	0.002 0.002	1 1			"	"	"	X X
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	< 0.002 < 0.002 < 0.002 < 0.002		μg/l μg/l μg/l	0.002 0.002 0.002	0.002 0.002 0.002	1 1 1				" "	"	X X X
Prepared 319-84-6 319-85-7 319-86-8 58-89-9	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002		hâ\I hâ\I hâ\I	0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002	1 1 1				" " "	"	x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002		hā\I hā\I hā\I hā\I	0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002	1 1 1 1			" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002		hā\I hā\I hā\I hā\I hā\I	0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1			" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	X X X X X
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002		hā/l hā/l hā/l hā/l hā/l	0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p')	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002		hā\I hā\I hā\I hā\I hā\I hā\I	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " " "		x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin	< 0.002 < 0.002		hā/l hā/l hā/l hā/l hā/l hā/l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1				" " " " " " " " "		x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II	< 0.002 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1				" " " " " " " " " " " " "		x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin	< 0.002 < 0.002		hā\l hā\l hā\l hā\l hā\l hā\l hā\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003	1 1 1 1 1 1 1 1 1 1				" " " " " " " " " " " " " "		x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " "		x x x x x x x x x x x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p')	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1				" " " " " " " " " " " " " " " " " " "		x x x x x x x x x x x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5 53494-70-5	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor Endrin ketone	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8 50-29-3 72-43-5 53494-70-5 7421-93-4	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan III 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor Endrin ketone Endrin aldehyde	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x
Prepared 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 1031-07-8	by method SW846 3510C alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE (p,p') Endrin Endosulfan II 4,4'-DDD (p,p') Endosulfan sulfate 4,4'-DDT (p,p') Methoxychlor Endrin ketone	< 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004		ha\l ha\l ha\l ha\l ha\l ha\l ha\l ha\l	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002	1 1 1 1 1 1 1 1 1 1 1 1 1						x x x x x x x x x x x x x x x x x x x

	lentification VNSTREAM-05-10-01-14 -05				<u>Project #</u> 25155	:	Matrix Surface W		ection Date I-Oct-14 14			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolati	le Organic Compounds by C	GC .											
	lorine Pesticides												
	by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Χ
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1		n	"	"	"	
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	56			30-15	60 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	86			30-15	0 %		"	n .	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	33			30-15	0 %		"	"	u	•	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	51			30-15	60 %		"	"	"	"	"	
Total Meta	als by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423834	Х
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	15-Oct-14	"	"	Х
7440-39-3	Barium	0.122		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Х
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Х
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Х
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Х
7440-50-8	Copper	0.0050		mg/l	0.0050	0.0022	1	"	"	"	"	"	Х
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Х
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Х
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	"	"	"	"	"	Х
782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	"	"	"		"	Х
440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1		"	"	"	"	Х
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	ıı .	"	"	"		Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	"	"	"	"	"	Х
Fotal Meta	als by EPA 200 Series Metho	ods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	09-Oct-14	10-Oct-14	SMR	1423835	Х

-	dentification_			Client I	Project #		Matrix	Colle	ection Date	/Time	Re	ceived	
	VNSTREAM-06-10-01-14	1			5155		Surface W	·	-Oct-14 11			Oct-14	
SB97408-	-06												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by													
	by method SW846 3510C	<u>}</u>											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	10-Oct-14	ML/	1423547	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"	"		"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	· ·	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1	"	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1	ıı .	"		"	"	Х
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1		"	"	"	"	Х
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1		"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"	"	"	"	Х
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Х
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"	Х
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
Surrogate	recoveries:												
_	⁰ Benzo (e) pyrene-d12	82			30-13	0 %		"	"	"		"	
	ile Organic Compounds by	GC											
	nlorine Pesticides												
Prepared	by method SW846 3510C	<u> </u>											
319-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Χ
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
60-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-20-8	Endrin	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Χ
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	X
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	X
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
7421-93-4	Endrin aldehyde	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
8001-35-2	Toxaphene	< 0.053		μg/l	0.053	0.048	1	"	"	"	"	"	Χ

-	lentification VNSTREAM-06-10-01-14 -06				<u>Project #</u> 25155	;	Matrix Surface W	'	ection Date I-Oct-14 11			Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	lle Organic Compounds by C	GC .											
Organoch	lorine Pesticides												
	by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	X
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	45			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	57			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	30			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	43			30-15	50 %		"	u u	"	"	"	
Total Meta	als by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423834	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	15-Oct-14	"	"	Χ
7440-39-3	Barium	0.135		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7440-50-8	Copper	0.0076		mg/l	0.0050	0.0022	1	"	"	"	"	"	Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Х
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Χ
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	"	"	"	"	"	Х
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	"	"	"	"	"	Х
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	u	"	"	"	"	Х
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	ıı	"	"	"		Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	"	"	"	"	"	Х
Total Meta	als by EPA 200 Series Metho	ods		-									
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA 245.1/7470A	09-Oct-14	10-Oct-14	SMR	1423835	X

	<u>dentification</u> VNSTREAM-01-10-02-14 -07	4-FD			<u>Project #</u> 25155		Matrix Surface Wa		ection Date 2-Oct-14 10			occived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by	GCMS											
SVOCs b													
	by method SW846 3510C	=		_									
83-32-9	Acenaphthene	< 0.050		µg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	10-Oct-14	ML/	1423547	Х
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1	11	n n	"	"	"	X
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	X
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	X
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	Х
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"	"			Х
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	"	"			Х
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	X
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1	"	"	"		"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	"	"		"	Х
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	"	"	"	"	Х
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"			Х
Surrogate i	recoveries:												-
205440-82-0	Denzo (e) pyrene-d12	85			30-13	80 %		"	"	"	"		
Semivolati	ile Organic Compounds by	GC											
Organoch	lorine Pesticides												
Prepared	by method SW846 3510C	<u>:</u>											
319-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	X
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	Х
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	X
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	X
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	Х
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
60-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	Х
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1	"	"	"		"	Х
72-20-8	Endrin	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Х
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1	II .	"	"	"	"	Χ
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1	II .	"	"	"	"	Χ
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1	II .	"	"	"	"	Χ
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.002	1	11	"	"	"	"	Χ
7421-93-4	Endrin aldehyde	< 0.004		μg/l	0.004	0.002	1	II .	"	"	"	"	Χ
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
5566-34-7	gamma-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ

Sample Identification SW-DOWNSTREAM-01-10-02-14-FD SB97408-07			Client Project # Matrix 60225155 Surface Wat			Collection Date/Time 02-Oct-14 10:26			Received 02-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	БС											
	lorine Pesticides by method SW846 3510C												
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Х
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	"	"		"	"	
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	47		30-150 %				"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	46		30-150 %				"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	33		30-150 %				"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	33		30-150 %			"	n	"	"	"		
Total Meta	als by EPA 200/6000 Series M	Methods											
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472	
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423834	Χ
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	u u	15-Oct-14	"	"	Χ
7440-39-3	Barium	0.100		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Χ
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1	"	"	"	"	"	Χ
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Χ
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0022	1	"	"	"	"		Χ
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"		Χ
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"		Χ
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	II .	"	"	"	"	Χ
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	II .	"	"	"	"	Χ
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	II .	"	"	"	"	Χ
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	"	"	"	"	"	Х
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	u u	"	"	"	"	Х
Total Meta	als by EPA 200 Series Metho	ods											
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA	09-Oct-14	10-Oct-14	SMR	1423835	X

245.1/7470A

Sample Identification SW-DOWNSTREAM-01-10-02-14-EB SB97408-08			<u>Client Project #</u> 60225155			Matrix Surface W		Collection Date/Time 02-Oct-14 12:10			Received 02-Oct-14		
CAS No.	-08 Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by	GCMS											
SVOCs by													
Prepared	by method SW846 3510C	<u>}</u>											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.008	1	SW846 8270D SIM	06-Oct-14	10-Oct-14	ML/	1423547	X
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.009	1	"	"		"	"	Х
90-12-0	1-Methylnaphthalene	< 0.050		μg/l	0.050	0.014	1	II .	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.010	1	n .	n n	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.021	1	"	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.008	1	"	"	"	"	"	Χ
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.007	1	II .	n n	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.010	1	"	u u	"	"	"	Χ
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.007	1	"	u u	"	"	"	Χ
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.008	1	"	u u	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.025	1	"	"	"	"	"	Χ
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.010	1	"	"	"	"	"	Χ
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.011	1	"	"	"	"	"	Χ
91-57-6	2-Methylnaphthalene	< 0.050		μg/l	0.050	0.010	1	n n	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.011	1	"	n n	"		"	Х
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.027	1	"	u u	"	"	"	Х
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.009	1	"	"	"	"	"	Х
Surrogate i	recoveries:												
_	Denzo (e) pyrene-d12	80			30-13	0 %		n .	"	"	"	"	
Semivolati	ile Organic Compounds by	GC											
	nlorine Pesticides												
	by method SW846 3510C	<u>}</u>											
319-84-6	alpha-BHC	< 0.002		μg/l	0.002	0.002	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	X
319-85-7	beta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
319-86-8	delta-BHC	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
58-89-9	gamma-BHC (Lindane)	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	X
76-44-8	Heptachlor	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
309-00-2	Aldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
1024-57-3	Heptachlor epoxide	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
959-98-8	Endosulfan I	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
60-57-1	Dieldrin	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-55-9	4,4'-DDE (p,p')	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Χ
72-20-8	Endrin	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Χ
33213-65-9	Endosulfan II	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
72-54-8	4,4'-DDD (p,p')	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
1031-07-8	Endosulfan sulfate	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Χ
50-29-3	4,4'-DDT (p,p')	< 0.004		μg/l	0.004	0.002	1	II .	n n	"	"	"	Х
72-43-5	Methoxychlor	< 0.004		μg/l	0.004	0.003	1	II .	"	"	"	u .	Х
53494-70-5	Endrin ketone	< 0.004		μg/l	0.004	0.003	1	"	"	"	"	"	Х
7421-93-4	Endrin aldehyde	< 0.004		μg/l	0.004	0.002	1	"	"	"	"	"	Х
5103-71-9	alpha-Chlordane	< 0.002		μg/l	0.002	0.002	1	"	"	"	"	"	Х
5566-34-7	gamma-Chlordane	< 0.002		ua/l	0.002	0.000	4	"	"				Χ
3300-34-7	garrina ornoraario	₹ 0.002		μg/l	0.002	0.002	1						^

Sample Identification SW-DOWNSTREAM-01-10-02-14-EB SB97408-08				<u>Client Project #</u> 60225155		;	Matrix Surface Water		Collection Date/Time 02-Oct-14 12:10			Received 02-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolati	le Organic Compounds by G	GC .												
Organoch	lorine Pesticides													
Prepared	by method SW846 3510C													
57-74-9	Chlordane	< 0.007		μg/l	0.007	0.007	1	SW846 8081B	07-Oct-14	11-Oct-14	TG	1423604	Χ	
15972-60-8	Alachlor	< 0.002		μg/l	0.002	0.002	1	п	"	"	"	"		
Surrogate r	recoveries:													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	42			30-15	50 %		u	II	"	"	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	50		30-150 %				u .	"	"	"	"		
2051-24-3	Decachlorobiphenyl (Sr)	31			30-15	50 %		"	"	"	"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	36		30-150 %				u	"	"	"	"		
Total Meta	als by EPA 200/6000 Series N	Aethods												
	Preservation	Field Preserved		N/A			1	EPA 200/6000 methods			YR	1423472		
Total Meta	als by EPA 6000/7000 Series	Methods												
7440-22-4	Silver	< 0.0050		mg/l	0.0050	0.0011	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423834	Χ	
7440-38-2	Arsenic	< 0.0040		mg/l	0.0040	0.0019	1	"	"	15-Oct-14	"	"	Χ	
7440-39-3	Barium	< 0.0050		mg/l	0.0050	0.0008	1	"	"	15-Oct-14	"	"	Χ	
7440-41-7	Beryllium	< 0.0020		mg/l	0.0020	0.0004	1		"	"	"	"	Х	
7440-43-9	Cadmium	< 0.0025		mg/l	0.0025	0.0012	1	"	"	"	"	"	Χ	
7440-47-3	Chromium	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Х	
7440-50-8	Copper	< 0.0050		mg/l	0.0050	0.0022	1	"	"	"	"	"	Χ	
7440-02-0	Nickel	< 0.0050		mg/l	0.0050	0.0014	1	"	"	"	"	"	Χ	
7439-92-1	Lead	< 0.0075		mg/l	0.0075	0.0032	1	"	"	"	"	"	Χ	
7440-36-0	Antimony	< 0.0060		mg/l	0.0060	0.0022	1	"	"	"	"	"	Χ	
7782-49-2	Selenium	< 0.0150		mg/l	0.0150	0.0067	1	"	"	"	"	"	Х	
7440-28-0	Thallium	< 0.0050		mg/l	0.0050	0.0018	1	"	"	"	"	"	Х	
7440-62-2	Vanadium	< 0.0050		mg/l	0.0050	0.0018	1	п	"	"	"	"	Х	
7440-66-6	Zinc	< 0.0450	R06	mg/l	0.0450	0.0024	1	"	"	"	"	"	Х	
Total Meta	als by EPA 200 Series Metho	ds												
7439-97-6	Mercury	< 0.00020		mg/l	0.00020	0.00008	1	EPA	09-Oct-14	10-Oct-14	SMR	1423835	Х	

245.1/7470A

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1423547 - SW846 3510C										
Blank (1423547-BLK2)					Pre	epared: 06-	Oct-14 Ana	alyzed: 09-C	ct-14	
Acenaphthene	< 0.050		μg/l	0.050						
Acenaphthylene	< 0.050		μg/l	0.050						
1-Methylnaphthalene	< 0.050		μg/l	0.050						
Anthracene	< 0.050		μg/l	0.050						
Benzo (a) anthracene	< 0.050		μg/l	0.050						
Benzo (a) pyrene	< 0.050		μg/l	0.050						
Benzo (b) fluoranthene	< 0.050		μg/l	0.050						
Benzo (g,h,i) perylene	< 0.050		μg/l	0.050						
Benzo (k) fluoranthene	< 0.050		μg/l	0.050						
Chrysene	< 0.050		μg/l	0.050						
Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050						
Fluoranthene	< 0.050		μg/l	0.050						
Fluorene	< 0.050		μg/l	0.050						
Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050						
2-Methylnaphthalene	< 0.050		μg/l	0.050						
Naphthalene	< 0.050		μg/l	0.050						
Phenanthrene	< 0.050		μg/l	0.050						
Pyrene	< 0.050		μg/l	0.050						
Surrogate: Benzo (e) pyrene-d12	0.950		μg/l		1.00		95	30-130		
LCS (1423547-BS2)					Pre	epared: 06-	Oct-14 Ana	alyzed: 09-C	ct-14	
Acenaphthene	0.534		μg/l	0.050	1.00		53	40-140		
Acenaphthylene	0.542		μg/l	0.050	1.00		54	40-140		
1-Methylnaphthalene	0.478		μg/l	0.050	1.00		48	40-140		
Anthracene	0.516		μg/l	0.050	1.00		52	40-140		
Benzo (a) anthracene	0.677		μg/l	0.050	1.00		68	40-140		
Benzo (a) pyrene	0.642		μg/l	0.050	1.00		64	40-140		
Benzo (b) fluoranthene	0.591		μg/l	0.050	1.00		59	40-140		
Benzo (g,h,i) perylene	0.612		μg/l	0.050	1.00		61	40-140		
Benzo (k) fluoranthene	0.769		μg/l	0.050	1.00		77	40-140		
Chrysene	0.763		μg/l	0.050	1.00		76	40-140		
Dibenzo (a,h) anthracene	0.710		μg/l	0.050	1.00		71	40-140		
Fluoranthene	0.664		μg/l	0.050	1.00		66	40-140		
Fluorene	0.666		μg/l	0.050	1.00		67	40-140		
Indeno (1,2,3-cd) pyrene	0.584		μg/l	0.050	1.00		58	40-140		
2-Methylnaphthalene	0.456		μg/l	0.050	1.00		46	40-140		
Naphthalene	0.366	QC2	μg/l	0.050	1.00		37	40-140		
Phenanthrene	0.564		μg/l	0.050	1.00		56	40-140		
Pyrene	0.674		μg/l	0.050	1.00		67	40-140		
Surrogate: Benzo (e) pyrene-d12	0.700		μg/l		1.00		70	30-130		
LCS Dup (1423547-BSD2)					Pre	epared: 06-	Oct-14 An	alyzed: 09-C	ct-14	
Acenaphthene	0.477		μg/l	0.050	1.00		48	40-140	11	20
Acenaphthylene	0.507		μg/l	0.050	1.00		51	40-140	7	20
1-Methylnaphthalene	0.411		μg/l	0.050	1.00		41	40-140	15	20
Anthracene	0.499		μg/l	0.050	1.00		50	40-140	3	20
Benzo (a) anthracene	0.680		μg/l	0.050	1.00		68	40-140	0.4	20
Benzo (a) pyrene	0.648		μg/l	0.050	1.00		65	40-140	0.9	20
Benzo (b) fluoranthene	0.580		μg/l	0.050	1.00		58	40-140	2	20
Benzo (g,h,i) perylene	0.623		μg/l	0.050	1.00		62	40-140	2	20
Benzo (k) fluoranthene	0.743		μg/l	0.050	1.00		74	40-140	3	20
Chrysene	0.743		μg/l	0.050	1.00		74	40-140	3	20
Dibenzo (a,h) anthracene	0.697		μg/l	0.050	1.00		70	40-140	2	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423547 - SW846 3510C										
LCS Dup (1423547-BSD2)					Pre	epared: 06-	Oct-14 An	alyzed: 09-O	ct-14	
Fluoranthene	0.640		μg/l	0.050	1.00		64	40-140	4	20
Fluorene	0.572		μg/l	0.050	1.00		57	40-140	15	20
Indeno (1,2,3-cd) pyrene	0.572		μg/l	0.050	1.00		57	40-140	2	20
2-Methylnaphthalene	0.415		μg/l	0.050	1.00		42	40-140	9	20
Pyrene	0.641		μg/l	0.050	1.00		64	40-140	5	20
Surrogate: Benzo (e) pyrene-d12	0.730		μg/l		1.00		73	30-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1423604 - SW846 3510C										
Blank (1423604-BLK1)					Pre	epared & A	nalyzed: 07-	Oct-14		
alpha-BHC	< 0.002		μg/l	0.002		•	-			
alpha-BHC [2C]	< 0.002		μg/l	0.002						
beta-BHC	< 0.002		μg/l	0.002						
beta-BHC [2C]	< 0.002		μg/l	0.002						
delta-BHC	< 0.002		μg/l	0.002						
delta-BHC [2C]	< 0.002		μg/l	0.002						
gamma-BHC (Lindane)	< 0.002		μg/l	0.002						
gamma-BHC (Lindane) [2C]	< 0.002		μg/l	0.002						
Heptachlor	< 0.002		μg/l	0.002						
Heptachlor [2C]	< 0.002		μg/l	0.002						
Aldrin	< 0.002		μg/l	0.002						
Aldrin [2C]	< 0.002		μg/l	0.002						
Heptachlor epoxide	< 0.002		μg/l	0.002						
Heptachlor epoxide [2C]	< 0.002		μg/l	0.002						
Endosulfan I	< 0.002		μg/l	0.002						
Endosulfan I [2C]	< 0.002		μg/l	0.002						
Dieldrin	< 0.002		μg/l	0.002						
Dieldrin [2C]	< 0.002		μg/l	0.002						
4,4'-DDE (p,p')	< 0.002		μg/l	0.002						
4,4'-DDE (p,p') [2C]	< 0.002		μg/l	0.002						
Endrin	< 0.004		μg/l	0.004						
Endrin [2C]	< 0.004		μg/l	0.004						
Endosulfan II	< 0.004		μg/l	0.004						
Endosulfan II [2C]	< 0.004		μg/l	0.004						
4,4'-DDD (p,p')	< 0.004		μg/l	0.004						
4,4'-DDD (p,p') [2C]	< 0.004		μg/l	0.004						
Endosulfan sulfate	< 0.004		μg/l	0.004						
Endosulfan sulfate [2C]	< 0.004		μg/l	0.004						
4,4'-DDT (p,p')	< 0.004		μg/l	0.004						
4,4'-DDT (p,p') [2C]	< 0.004		μg/l	0.004						
Methoxychlor	< 0.004		μg/l	0.004						
Methoxychlor [2C]	< 0.004		μg/l	0.004						
Endrin ketone	< 0.004		μg/l	0.004						
Endrin ketone [2C]	< 0.004		μg/l	0.004						
Endrin aldehyde	< 0.004		μg/l	0.004						
Endrin aldehyde [2C]	< 0.004		μg/l	0.004						
alpha-Chlordane	< 0.002		μg/l	0.002						
alpha-Chlordane [2C]	< 0.002		μg/l	0.002						
gamma-Chlordane	< 0.002		μg/l	0.002						
gamma-Chlordane [2C]	< 0.002		μg/l	0.002						
Toxaphene	< 0.050		μg/l	0.050						
Toxaphene [2C]	< 0.050		μg/l	0.050						
Chlordane	< 0.007		μg/l	0.007						
Chlordane [2C]	< 0.007		μg/l	0.007						
Alachlor	< 0.002		μg/l	0.002						
Alachlor [2C]	< 0.002		μg/l	0.002						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0210		μg/l		0.0200		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0200		μg/l		0.0200		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0172		μg/l		0.0200		86	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0161		μg/l		0.0200		81	30-150		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1423604 - SW846 3510C										
Blank (1423604-BLK2)					Pre	epared: 07-	Oct-14 Ana	alyzed: 13-C	oct-14	
alpha-BHC	< 0.020		μg/l	0.020		•		•		
alpha-BHC [2C]	< 0.020		μg/l	0.020						
beta-BHC	< 0.020		μg/l	0.020						
beta-BHC [2C]	< 0.020		μg/l	0.020						
delta-BHC	< 0.020		μg/l	0.020						
delta-BHC [2C]	< 0.020		μg/l	0.020						
gamma-BHC (Lindane)	< 0.020		μg/l	0.020						
gamma-BHC (Lindane) [2C]	< 0.020		μg/l	0.020						
Heptachlor	< 0.020		μg/l	0.020						
Heptachlor [2C]	< 0.020		μg/l	0.020						
Aldrin	< 0.020		μg/l	0.020						
Aldrin [2C]	< 0.020		μg/l	0.020						
Heptachlor epoxide	< 0.020		μg/l	0.020						
Heptachlor epoxide [2C]	< 0.020		μg/l	0.020						
Endosulfan I	< 0.020		μg/l	0.020						
Endosulfan I [2C]	< 0.020		μg/l	0.020						
Dieldrin	< 0.020		μg/l	0.020						
Dieldrin [2C]	< 0.020		μg/l	0.020						
4,4'-DDE (p,p')	< 0.020		μg/l	0.020						
4,4'-DDE (p,p') [2C]	< 0.020		μg/l	0.020						
Endrin	< 0.040		μg/l	0.040						
Endrin [2C]	< 0.040		μg/l	0.040						
Endosulfan II	< 0.040		μg/l	0.040						
Endosulfan II [2C]	< 0.040		μg/l	0.040						
4,4'-DDD (p,p')	< 0.040		μg/l	0.040						
4,4'-DDD (p,p') [2C]	< 0.040		μg/l	0.040						
Endosulfan sulfate	< 0.040		μg/l	0.040						
Endosulfan sulfate [2C]	< 0.040		μg/l	0.040						
4,4'-DDT (p,p')	< 0.040		μg/l	0.040						
4,4'-DDT (p,p') [2C]	< 0.040		μg/l	0.040						
Methoxychlor	< 0.040		μg/l	0.040						
Methoxychlor [2C]	< 0.040		μg/l	0.040						
Endrin ketone	< 0.040		μg/l	0.040						
Endrin ketone [2C]	< 0.040		μg/l	0.040						
Endrin aldehyde	< 0.040		μg/l	0.040						
Endrin aldehyde [2C]	< 0.040		μg/l	0.040						
alpha-Chlordane	< 0.020		μg/l	0.020						
alpha-Chlordane [2C]	< 0.020		μg/l	0.020						
gamma-Chlordane	< 0.020		μg/l	0.020						
gamma-Chlordane [2C]	< 0.020		μg/l	0.020						
Toxaphene	< 0.500		μg/l	0.500						
Toxaphene [2C]	< 0.500		μg/l	0.500						
Chlordane	< 0.065		μg/l	0.065						
Chlordane [2C]	< 0.065		μg/l	0.065						
Alachlor	< 0.020		μg/l	0.020						
Alachlor [2C]	< 0.020		μg/l	0.020						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.166		μg/l		0.200		83	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.162		μg/l		0.200		81	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.117		μg/l		0.200		58	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.115		μg/l		0.200		58	30-150		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1423604 - SW846 3510C										
LCS (1423604-BS1)					Pre	epared & A	nalyzed: 07	-Oct-14		
alpha-BHC	0.040		μg/l	0.002	0.0500		80	40-140		
alpha-BHC [2C]	0.039		μg/l	0.002	0.0500		78	40-140		
beta-BHC	0.049		μg/l	0.002	0.0500		98	40-140		
beta-BHC [2C]	0.052		μg/l	0.002	0.0500		103	40-140		
delta-BHC	0.051		μg/l	0.002	0.0500		102	40-140		
delta-BHC [2C]	0.053		μg/l	0.002	0.0500		106	40-140		
gamma-BHC (Lindane)	0.040		μg/l	0.002	0.0500		79	40-140		
gamma-BHC (Lindane) [2C]	0.040		μg/l	0.002	0.0500		80	40-140		
Heptachlor	0.037		μg/l	0.002	0.0500		74	40-140		
Heptachlor [2C]	0.039		μg/l	0.002	0.0500		78	40-140		
Aldrin	0.037		μg/l	0.002	0.0500		73	40-140		
Aldrin [2C]	0.039		μg/l	0.002	0.0500		77	40-140		
Heptachlor epoxide	0.036		μg/l	0.002	0.0500		71	40-140		
Heptachlor epoxide [2C]	0.039		μg/l	0.002	0.0500		78	40-140		
Endosulfan I	0.036		μg/l	0.002	0.0500		71	40-140		
Endosulfan I [2C]	0.039		μg/l	0.002	0.0500		78	40-140		
Dieldrin	0.034		μg/l	0.002	0.0500		69	40-140		
Dieldrin [2C]	0.034		μg/l	0.002	0.0500		76	40-140		
4,4'-DDE (p,p')	0.034		μg/l	0.002	0.0500		68	40-140		
4,4'-DDE (p,p') [2C]	0.034			0.002	0.0500		76	40-140		
Endrin	0.036		μg/l	0.002	0.0500		70 72	40-140		
Endrin [2C]	0.036		μg/l	0.004	0.0500		81	40-140		
Endosulfan II			μg/l	0.004	0.0500		74	40-140		
	0.037		μg/l							
Endosulfan II [2C]	0.042		μg/l	0.004 0.004	0.0500 0.0500		83 70	40-140 40-140		
4,4'-DDD (p,p')	0.035		μg/l							
4,4'-DDD (p,p') [2C] Endosulfan sulfate	0.042		μg/l	0.004	0.0500		83	40-140		
	0.041		μg/l	0.004	0.0500		81	40-140		
Endosulfan sulfate [2C]	0.049		μg/l	0.004	0.0500		97	40-140		
4,4'-DDT (p,p')	0.031		μg/l	0.004	0.0500		62	40-140		
4,4'-DDT (p,p') [2C]	0.036		μg/l "	0.004	0.0500		72	40-140		
Methoxychlor	0.035		μg/l "	0.004	0.0500		71	40-140		
Methoxychlor [2C]	0.040		μg/l 	0.004	0.0500		81	40-140		
Endrin ketone	0.036		μg/l	0.004	0.0500		72	40-140		
Endrin ketone [2C]	0.041		μg/l	0.004	0.0500		82	40-140		
Endrin aldehyde	0.036		μg/l 	0.004	0.0500		72	40-140		
Endrin aldehyde [2C]	0.043		μg/l	0.004	0.0500		86	40-140		
alpha-Chlordane	0.035		μg/l	0.002	0.0500		69	40-140		
alpha-Chlordane [2C]	0.038		μg/l	0.002	0.0500		76	40-140		
gamma-Chlordane	0.036		μg/l	0.002	0.0500		71	40-140		
gamma-Chlordane [2C]	0.039		μg/l	0.002	0.0500		78	40-140		
Alachlor	0.043		μg/l	0.002	0.0500		87	40-140		
Alachlor [2C]	0.045		μg/l	0.002	0.0500		91	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0165		μg/l		0.0200		83	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.0163		μg/l		0.0200		82	30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.0157		μg/l		0.0200		79	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0157		μg/l		0.0200		79	30-150		
LCS Dup (1423604-BSD1)					Pre	epared & A	nalyzed: 07	-Oct-14		
alpha-BHC	0.041		μg/l	0.002	0.0500		82	40-140	2	20
alpha-BHC [2C]	0.039		μg/l	0.002	0.0500		77	40-140	0.4	20
beta-BHC	0.050		μg/l	0.002	0.0500		99	40-140	1	20

malrita(s)	D 1/	T21_	Ţ T : 4	*DD1	Spike	Source	0/BEC	%REC	DDD	RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1423604 - SW846 3510C										
LCS Dup (1423604-BSD1)					Pre	pared & Ar	nalyzed: 07-	Oct-14		
beta-BHC [2C]	0.052		μg/l	0.002	0.0500		104	40-140	1	20
delta-BHC	0.051		μg/l	0.002	0.0500		103	40-140	1	20
delta-BHC [2C]	0.053		μg/l	0.002	0.0500		107	40-140	1	20
gamma-BHC (Lindane)	0.041		μg/l	0.002	0.0500		82	40-140	3	20
gamma-BHC (Lindane) [2C]	0.040		μg/l	0.002	0.0500		80	40-140	0.03	20
Heptachlor	0.038		μg/l	0.002	0.0500		77	40-140	3	20
Heptachlor [2C]	0.039		μg/l	0.002	0.0500		78	40-140	0.4	20
Aldrin	0.039		μg/l	0.002	0.0500		77	40-140	5	20
Aldrin [2C]	0.039		μg/l	0.002	0.0500		77	40-140	0.3	20
Heptachlor epoxide	0.038		μg/l	0.002	0.0500		76	40-140	7	20
Heptachlor epoxide [2C]	0.039		μg/l	0.002	0.0500		78	40-140	0.1	20
Endosulfan I	0.038		μg/l	0.002	0.0500		77	40-140	7	20
Endosulfan I [2C]	0.039		μg/l	0.002	0.0500		78	40-140	0.2	20
Dieldrin	0.037		μg/l	0.002	0.0500		74	40-140	8	20
Dieldrin [2C]	0.038		μg/l	0.002	0.0500		76	40-140	0.3	20
4,4'-DDE (p,p')	0.037		μg/l	0.002	0.0500		74	40-140	8	20
4,4'-DDE (p,p') [2C]	0.038		μg/l	0.002	0.0500		76	40-140	0.2	20
Endrin	0.040		μg/l	0.004	0.0500		79	40-140	10	20
Endrin [2C]	0.041		μg/l	0.004	0.0500		81	40-140	0.8	20
Endosulfan II	0.041		μg/l	0.004	0.0500		83	40-140	11	20
Endosulfan II [2C]	0.042		μg/l	0.004	0.0500		84	40-140	0.6	20
4,4'-DDD (p,p')	0.039		μg/l	0.004	0.0500		78	40-140	11	20
4,4'-DDD (p,p') [2C]	0.042		μg/l	0.004	0.0500		85	40-140	1	20
Endosulfan sulfate	0.044		μg/l	0.004	0.0500		88	40-140	8	20
Endosulfan sulfate [2C]	0.049		μg/l	0.004	0.0500		97	40-140	0.1	20
4,4'-DDT (p,p')	0.035		μg/l	0.004	0.0500		69	40-140	11	20
4,4'-DDT (p,p') [2C]	0.037		μg/l	0.004	0.0500		74	40-140	3	20
Methoxychlor	0.040		μg/l	0.004	0.0500		79	40-140	12	20
Methoxychlor [2C]	0.040		μg/l	0.004	0.0500		82	40-140	2	20
Endrin ketone	0.041		μg/l	0.004	0.0500		79	40-140	10	20
Endrin ketone [2C]	0.040			0.004	0.0500		81	40-140	0.6	20
Endrin aldehyde			µg/l	0.004	0.0500		78	40-140	8	20
Endrin aldehyde [2C]	0.039 0.042		µg/l	0.004	0.0500			40-140	2	20
alpha-Chlordane	0.042		µg/l	0.004	0.0500		84 75	40-140	7	20
alpha-Chlordane [2C]			µg/l							20
	0.038		µg/l	0.002	0.0500		76 76	40-140	0.1 7	20
gamma-Chlordane	0.038		µg/l	0.002	0.0500		76 79	40-140		
gamma-Chlordane [2C]	0.039		μg/l	0.002	0.0500		78 03	40-140	0.1	20
Alachlor Alachlor [2C]	0.046 0.044		μg/l μg/l	0.002 0.002	0.0500 0.0500		93 89	40-140 40-140	7 2	20 20
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0169		μg/l		0.0200		84	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.0162		μg/l		0.0200		81	30-150		
[2C]										
Surrogate: Decachlorobiphenyl (Sr)	0.0168		μg/l		0.0200		84	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.0162		μg/l		0.0200		81	30-150		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423834 - SW846 3005A										
Blank (1423834-BLK1)					Pre	epared: 09-	Oct-14 An	alyzed: 15-C	ct-14	
Antimony	< 0.0060		mg/l	0.0060						
Barium	< 0.0050		mg/l	0.0050						
Silver	< 0.0050		mg/l	0.0050						
Zinc	< 0.0450		mg/l	0.0450						
Vanadium	< 0.0050		mg/l	0.0050						
Thallium	< 0.0050		mg/l	0.0050						
Selenium	< 0.0150		mg/l	0.0150						
Arsenic	< 0.0040		mg/l	0.0040						
Nickel	< 0.0050		mg/l	0.0050						
Copper	< 0.0050		mg/l	0.0050						
Chromium	< 0.0050		mg/l	0.0050						
Beryllium	< 0.0020		mg/l	0.0020						
Cadmium	< 0.0025		mg/l	0.0025						
Lead	< 0.0075		mg/l	0.0075						
LCS (1423834-BS1)					Pre	epared: 09-	Oct-14 An	alyzed: 15-C	ct-14	
Thallium	1.33		mg/l	0.0050	1.25		106	85-115		
Arsenic	1.26		mg/l	0.0040	1.25		100	85-115		
Silver	1.21		mg/l	0.0050	1.25		97	85-115		
Vanadium	1.19		mg/l	0.0050	1.25		95	85-115		
Selenium	1.20		mg/l	0.0150	1.25		96	85-115		
Antimony	1.21		mg/l	0.0060	1.25		97	85-115		
Lead	1.24		mg/l	0.0075	1.25		99	85-115		
Copper	1.21		mg/l	0.0050	1.25		97	85-115		
Chromium	1.28		mg/l	0.0050	1.25		102	85-115		
Cadmium	1.23		mg/l	0.0035	1.25		99	85-115		
Beryllium	1.32		mg/l	0.0020	1.25		105	85-115		
Barium	1.24		mg/l	0.0020	1.25		99	85-115		
Nickel	1.23		mg/l	0.0050	1.25		98	85-115		
Zinc	1.26		-	0.0050	1.25		101	85-115		
	1.20		mg/l	0.0430						
LCS Dup (1423834-BSD1)				0.0000		epared: 09-		alyzed: 15-C		00
Beryllium	1.35		mg/l	0.0020	1.25		108	85-115	2	20
Silver	1.20		mg/l	0.0050	1.25		96	85-115	0.5	20
Zinc	1.32		mg/l	0.0450	1.25		106	85-115	5	20
Vanadium	1.24		mg/l	0.0050	1.25		99	85-115	5	20
Thallium	1.38		mg/l	0.0050	1.25		111	85-115	4	20
Selenium	1.28		mg/l	0.0150	1.25		102	85-115	6	20
Antimony	1.26		mg/l	0.0060	1.25		101	85-115	4	20
Lead	1.30		mg/l	0.0075	1.25		104	85-115	5	20
Nickel	1.29		mg/l	0.0050	1.25		103	85-115	5	20
Copper	1.27		mg/l	0.0050	1.25		102	85-115	5	20
Cadmium	1.30		mg/l	0.0025	1.25		104	85-115	5	20
Barium	1.30		mg/l	0.0050	1.25		104	85-115	5	20
Arsenic	1.25		mg/l	0.0040	1.25		100	85-115	0.1	20
Chromium	1.31		mg/l	0.0050	1.25		105	85-115	3	20

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result %	6REC	%REC Limits	RPD	RPD Limit
Batch 1423835 - EPA200/SW7000 Series										
Blank (1423835-BLK1)					<u>Pre</u>	epared: 09-Oct-	14 A	nalyzed: 10-O	ct-14	
Mercury	< 0.00020		mg/l	0.00020						
LCS (1423835-BS1)					<u>Pre</u>	epared: 09-Oct-	14 A	nalyzed: 10-O	ct-14	
Mercury	0.00429		mg/l	0.00020	0.00500		86	85-115		

Semivolatile Organic Compounds by GC - Pesticide Breakdown Report

Analyte(s)	Column	% Breakdown	Limit	
Batch S411406				
Performance Mix (S411406-PEM1)				
4,4'-DDT (p,p')	1	2.8	15.0	
Endrin	1	3.2	15.0	
4,4'-DDT (p,p')	2	2.6	15.0	
Endrin	2	3.4	15.0	
Performance Mix (S411406-PEM2)				
4,4'-DDT (p,p')	1	2.8	15.0	
Endrin	1	3.4	15.0	
4,4'-DDT (p,p')	2	2.8	15.0	
Endrin	2	2.8	15.0	
Batch S411615				
Performance Mix (S411615-PEM1)				
4,4'-DDT (p,p')	1	1.9	15.0	
Endrin	1	2.6	15.0	
4,4'-DDT (p,p')	2	1.9	15.0	
Endrin	2	1.8	15.0	
Performance Mix (S411615-PEM2)				
4,4'-DDT (p,p')	1	1.8	15.0	
Endrin	1	2.2	15.0	
4,4'-DDT (p,p')	2	1.2	15.0	
Endrin	2	1.6	15.0	
Batch S411630				
Performance Mix (S411630-PEM1)				
4,4'-DDT (p,p')	1	2.6	15.0	
Endrin	1	4.3	15.0	
4,4'-DDT (p,p')	2	1.9	15.0	
Endrin	2	2.5	15.0	
Performance Mix (S411630-PEM2)				
4,4'-DDT (p,p')	1	2.6	15.0	
Endrin	1	3.9	15.0	
4,4'-DDT (p,p')	2	2.0	15.0	
Endrin	2	2.4	15.0	

Notes and Definitions

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

R06 MRL raised to correlate to batch QC reporting limits.

SGC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Anderson Nicole Leja

HANI

T GO T							,					- Company
4 Follis Mary	EDD format: 10214	S	റ്	Temp °C	Time	4	Date		Received by:	> Re	Relinquished by:	
いるびょう	0.5/											
5							1					
		×	×	×	2	2	>	G SW		10/02/2014	SW-DOWNSTREAM-() -10-0214-EB	C 68
		×	×	×	2	2	WS	S	10:26	10/02/2014	SW-DOWNSTREAM-V-10-V2-14-FD	6)
8		×	×	×	2	2	>	G SW	11:56	10/0\/2014	SW-DOWNSTREAM-06-10-01-14	06
		×	×	×	2	2	>	G SW	14:55	10/01/2014	SW-DOWNSTREAM-05-10-0)-14	20
		×	×	×	2	2	WS	G S	15:52	10/01/2014	SW-DOWNSTREAM-04-10-W-14	04
		×	×	×	2	2	WS	G S	16:45	10/0)/2014	SW-DOWNSTREAM-03-10-0)-14	03
e		×	×	×	2	2	WS	G S		10/0/2014	SW-DOWNSTREAM-02-10-0)-14	202
		×	×	×	2	2	WS	G S	10:26	10/02/2014	SW-DOWNSTREAM-01-10-12-14	17408 w/
Other: State-specific reporting standards:		8081	SIM)	6000		# of			Time	Date	Sample ID	Lab ID
☐ NJ Reduced* ☐ NJ Full ☐ Tier II* ☐ Tier IV*		cides)			Plasti	Ambe	VOA	rpe		C=Compsite	G = Grab	0
☐ DQA* ☐ ASP A* ☐ ASP B*		(Meth	hod 8	series		er Glas	Vials			x3=	X2=	X1=
ard No QC		od					e de la constante de la consta			dge A = Air	SW= surface Water SO=Soil SL= Sludge	O= Oil SW= sı
eport	Analysis	An		4	Containers	Cont			er	WW= Waste Water	GW = Groundwater	DW =Dinking Water
QA/QC Reporting Notes: *additional charges may appply	List Preservative Code below:	t Preserva	Lis			1	7 =CH ₃ OH	12=	6=Ascorbic Acid	5=NaOH 11=	2 =HCl 3 =H ₂ SO ₄ 4 =HNO ₃ 9 = Deionized Water 10 =H ₃ PO ₄	1=Na ₂ SZO ₃ 2 8= NaHSO ₄ 9=
Kris Van Naerssen/Clare Murphy-Hagan	Sampler(s): Kris Var	Sam			RQN	 		No.:	P.0		Malcom Beeler	
Greenwich State CT		Location:						=	ı		860-283-5800	Telephone #:
Greenwich High school	Site Name:	Site	71					٥			Rocky Hill, CT 06067	Rocky H
a a						_	Naerssei	Attn: Kris van Naerssen	Attn		500 Enterprise Dr	500 Ent
60225155	Project No:	Proje						ME	Invoice To: SAME	l h	Λ	Report To: AECOM
Samples disposed after 60 days unless otherwise instructed	Samples dispose					> 13					HANIBAL LECHNOLOGY	HANIBA
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes	All TATs subject to Min. 24-hr notifice						of of	Page			SPECTRUM ANALYTICAL, INC. Featuring	SPECTRUN
e Needed:	Rush TAT - Date Needed:		10									
	Standard TAT - 7 to 10 business days	121		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	RECO	ODY	JST	<u>င</u>	CHAIN OF CUSTODY RECOR	Ω		
	RRR	1	2	0								

97408 0

14:00

<

E-mail to:

0.0

Condition upon receipt

Custody Seals: ☐ Present ☐ Intact ☐ Broken

e below: QA/QC Reporting Notes: *additional charges may appoly	List Preservative Code below:	5=NaOH 6=Ascorbic Acid 7=CH ₃ OH 11= 12=	2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 9= Deionized Water 10=H ₃ PO ₄	1 =Na ₂ S2O ₃ 8 = NaHSO ₄
Kris Van Naerssen/Clare Murphy-Hagan	Sampler(s):		Malcom Beeler	Project Mgr.
Greenwich State CT	Location: _		ne #: 860-283-5800	Telephone #:
Greenwich High school	Site Name:	Attn: Kris van Naerssen	Rocky Hill, CT 06067	
60225155	Project No:	Invoice To: SAME	o: AECOM	Report To: AECOM
Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed	S	Pageof	HANIBAL TECHNOLOGY	
All TATs subject to laboratory approval	>		SPECTRUM ANALYTICAL, INC.	SPE
Rush TAT - Date Needed:		CHAIN OF COSTOD NECOND		1
Special Handling: Standard TAT - 7 to 10 business days	801169		2	

													_
(0)	90	30	24	03	02	97408 w/	Lab ID		X1=	O= Oil SW= s	DW =Dinking Water	1=Na ₂ S2O ₃ 3 8= NaHSO ₄ 9=	
SW-DOWNSTREAM-0-10-02-14-FD	SW-DOWNSTREAM-06-10-0)-14	SW-DOWNSTREAM-05-10-0)-14	SW-DOWNSTREAM-04-10-0 -14	SW-DOWNSTREAM-03-10-0\-14	SW-DOWNSTREAM-02-10-0)-14	SW-DOWNSTREAM-01-10-12-14	Sample ID	G = Grab	X2=	SW= surface Water SO=Soil SL= Sludge	GW = Groundwater	2 =HCl 3 =H ₂ SO ₄ 4 =HNO ₃ 9 = Deionized Water 10 =H ₃ PO ₄	
10/02/2014	10/0)/2014	10/01/2014	10/01/2014	10/01/2014	10/01/2014	10/02/2014	Date	C=Compsite	X3=	udge A = Air	ww= Waste Water	5=NaOH 11=	
10:26	11:56	14:55	15:52	16:45	17:25	10:26	Time	O I		7	ter	6=Ascorbic Acid	
G	G	G	ဝ	G	G	G	Ту	pe				cid 12= -	
SW	WS	WS	WS	SW	WS	WS	Ма	ıtrix				7 =CH ₃ OH	
							# of	VOA '	Vials			일 보	
2	2	2	2	2	2	2	# of	Ambe	r Glas	S	Cor		l
									Glass		Containers		
2	2	2	2	2	2	2	# of	Plasti	C				
×	×	×	×	×	×	×	Meta	Is (Me	thod series)	*			
×	×	×	×	×	×	×			hod 82	70	_		
×	×	×	×	×	×	×			(Metho	od		List Preservative Code below:	
											Analysis	servativ	
											/sis	e Code	
									lu.			below:	
											-		
		0				. i							
	Mark To	TACP for project	3/01	Osmest Br	Da died	* RSR IS Medel	Other: State-specific reporting standards:	☐ NJ Reduced* ☐ NJ Full ☐ Tier II* ☐ Tier IV*	☐ DQA* ☐ ASP A* ☐ ASP B*	CT DPH RCP Report	MA DEP MCP CAM Report yes no	QA/QC Reporting Notes: *additional charges may appply	, ,

Relinquished by:

Received by:

Date

Time

Temp °C

☑ EDD format: 10214

✓ E-mail to:

EQUIS EQUIS

101

1º

14:00

0,5

Condition upon receipt

☐ Ambient ☐ Iced ☐ Refrigerated ☐ DI VOA Frozen ☐ Soil Jar Frozen

Custody Seals: ☐ Present ☐ Intact ☐ Broken

SW-DOWNSTREAM-01-10-02-14-EB 10/02/2014 12:10

G

SW

2

N

×

×

×

Report Date: 15-Oct-14 17:13

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

AECOM Environment 500 Enterprise Drive, Suite 1A Rocky Hill, CT 06067

Attn: Malcolm Beeler

Project: Greenwich HS - Greenwich, CT

Project #: 60225155

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97409-01	SED-DOWNSTREAM-01-10-02-1	Soil	02-Oct-14 11:20	02-Oct-14 18:25
SB97409-02	SED-DOWNSTREAM-02-10-01-1	Soil	01-Oct-14 18:12	02-Oct-14 18:25
SB97409-03	SED-DOWNSTREAM-03-10-01-1	Soil	01-Oct-14 17:02	02-Oct-14 18:25
SB97409-04	SED-DOWNSTREAM-04-10-01-1	Soil	01-Oct-14 16:10	02-Oct-14 18:25
SB97409-05	SED-DOWNSTREAM-05-10-01-1	Soil	01-Oct-14 15:15	02-Oct-14 18:25
SB97409-06	SED-DOWNSTREAM-06-10-01-1	Soil	01-Oct-14 12:30	02-Oct-14 18:25
SB97409-07	SED-DOWNSTREAM-01-10-02-1 4-FD	Soil	02-Oct-14 11:20	02-Oct-14 18:25

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 39 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 0.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of ± 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 6010C

Samples:

SB97409-01 SED-DOWNSTREAM-01-10-02-14

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97409-02 SED-DOWNSTREAM-02-10-01-14

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97409-03 SED-DOWNSTREAM-03-10-01-14

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97409-04 SED-DOWNSTREAM-04-10-01-14

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97409-05 SED-DOWNSTREAM-05-10-01-14

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97409-06 SED-DOWNSTREAM-06-10-01-14

MRL raised to correlate to batch QC reporting limits.

Zinc

SB97409-07 SED-DOWNSTREAM-01-10-02-14-FD

MRL raised to correlate to batch QC reporting limits.

Zinc

SW846 8081B

Calibration:

SB97409-01

Internal standard area count (884700000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (2213%).

SB97409-02

SW846 8081B

Calibration:

SB97409-02

Internal standard area count (2287900000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (5724%).

SB97409-03

Internal standard area count (6665700000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (16676%).

SB97409-04

Internal standard area count (1705000000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (4265%).

SB97409-05

Internal standard area count (174300000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (436%).

SB97409-06

Internal standard area count (3168800000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (7928%).

SB97409-07

Internal standard area count (980700000) is outside criteria of the associated CCAL (39972080) for 2,4,5,6-TC-M-Xylene (IS) (2453%).

Samples:

SB97409-01 SED-DOWNSTREAM-01-10-02-14

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SB97409-02 SED-DOWNSTREAM-02-10-01-14

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SB97409-03 SED-DOWNSTREAM-03-10-01-14

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

SW846 8081B

Samples:

SB97409-03

SED-DOWNSTREAM-03-10-01-14

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SB97409-04

SED-DOWNSTREAM-04-10-01-14

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SB97409-05

SED-DOWNSTREAM-05-10-01-14

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SB97409-06

SED-DOWNSTREAM-06-10-01-14

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SB97409-07

SED-DOWNSTREAM-01-10-02-14-FD

Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation column were used.

2,4,5,6-TC-M-Xylene (IS)

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

4,4-DB-Octafluorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

SW846 8270D SIM

Laboratory Control Samples:

79383 BSD

2-Fluorobiphenyl RPD 11.8% (0%) is outside individual acceptance criteria.

Nitrobenzene-d5 RPD 40.5% (0%) is outside individual acceptance criteria.

Terphenyl-d14 RPD 2.48% (0%) is outside individual acceptance criteria.

SW846 8270D SIM

Samples:

SB97409-04 SED-DOWNSTREAM-04-10-01-14

Spike recovery falls outside of the control limit

Nitrobenzene-d5

SB97409-06 SED-DOWNSTREAM-06-10-01-14

Spike recovery falls outside of the control limit

Nitrobenzene-d5

SB97409-07 SED-DOWNSTREAM-01-10-02-14-FD

Spike recovery falls outside of the control limit

Nitrobenzene-d5

Sample Acceptance Check Form

Client:	AECOM Environment - Rocky Hill, CT
Project:	Greenwich HS - Greenwich, CT / 60225155
Work Order:	SB97409
Sample(s) received on:	10/2/2014

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>y es</u>	No	N/A
1.	Were custody seals present?		\checkmark	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\overline{V}		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	\checkmark		
0.	Did sample container labels agree with Chain of Custody document?	✓		
1.	Were samples received within method-specific holding times?	\checkmark		

Client Project # 60225155

Matrix Soil Collection Date/Time 02-Oct-14 11:20 Received 02-Oct-14

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by (GC											
	rine Pesticides by method SW846 3545A												
319-84-6	alpha-BHC [2C]	< 7.71		μg/kg dry	7.71	0.817	1	SW846 8081B	08-Oct-14	13-Oct-14	TG	1423741	Х
319-85-7	beta-BHC [2C]	< 7.71		μg/kg dry	7.71	0.959	1	п		п	"		Χ
319-86-8	delta-BHC [2C]	< 7.71		μg/kg dry	7.71	0.871	1						Χ
58-89-9	gamma-BHC (Lindane) [2C]	< 4.62		μg/kg dry	4.62	0.811	1	п	•		"		Х
76-44-8	Heptachlor [2C]	< 7.71		μg/kg dry	7.71	0.895	1						Χ
309-00-2	Aldrin [2C]	< 7.71		μg/kg dry	7.71	0.861	1				"		Х
1024-57-3	Heptachlor epoxide [2C]	< 7.71		μg/kg dry	7.71	0.894	1	н			"		Х
959-98-8	Endosulfan I [2C]	< 7.71		μg/kg dry	7.71	0.874	1				"		Χ
60-57-1	Dieldrin [2C]	< 7.71		μg/kg dry	7.71	1.10	1				"		Х
72-55-9	4,4'-DDE (p,p') [2C]	< 7.71		μg/kg dry	7.71	0.797	1	н			"		Х
72-20-8	Endrin [2C]	< 12.3		μg/kg dry	12.3	0.985	1	н			"		Х
33213-65-9	Endosulfan II [2C]	< 12.3		μg/kg dry	12.3	0.861	1	н			"		Х
72-54-8	4,4'-DDD (p,p') [2C]	< 12.3		μg/kg dry	12.3	0.801	1	н			"		Х
1031-07-8	Endosulfan sulfate [2C]	< 12.3		μg/kg dry	12.3	0.875	1	II .		н			Χ
50-29-3	4,4'-DDT (p,p') [2C]	15.7		μg/kg dry	12.3	0.767	1	н			"		Х
72-43-5	Methoxychlor [2C]	< 12.3		μg/kg dry	12.3	0.996	1	н			"		Х
53494-70-5	Endrin ketone [2C]	< 12.3		μg/kg dry	12.3	0.832	1	н			"		Х
7421-93-4	Endrin aldehyde [2C]	< 12.3		μg/kg dry	12.3	1.41	1	II .			"		Χ
5103-71-9	alpha-Chlordane [2C]	< 7.71		μg/kg dry	7.71	0.885	1	п		п	"		Х
5566-34-7	gamma-Chlordane [2C]	< 7.71		μg/kg dry	7.71	0.991	1	II .		н	"		Χ
8001-35-2	Toxaphene [2C]	< 154		μg/kg dry	154	63.0	1	II .		н	"		Χ
57-74-9	Chlordane [2C]	< 30.8		μg/kg dry	30.8	26.0	1	п		п	"		Х
15972-60-8	Alachlor [2C]	< 7.71		μg/kg dry	7.71	1.20	1	п		"	"		
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	3	SGC		30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	63			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	2	SGC		30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	48			30-15	0 %			•		"		
	tted Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 30.7		μg/kg dry	30.7	28.7	1	SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	Χ
11104-28-2	Aroclor-1221	< 30.7		μg/kg dry	30.7	26.1	1				"		Χ
11141-16-5	Aroclor-1232	< 30.7		μg/kg dry	30.7	27.6	1				"		Χ
53469-21-9	Aroclor-1242	< 30.7		μg/kg dry	30.7	13.6	1				"		Χ
12672-29-6	Aroclor-1248	< 30.7		μg/kg dry	30.7	16.7	1	п			"		Χ
11097-69-1	Aroclor-1254	< 30.7		μg/kg dry	30.7	19.4	1	п			"		Χ
11096-82-5	Aroclor-1260	< 30.7		μg/kg dry	30.7	22.0	1	п			"		Χ
37324-23-5	Aroclor-1262	< 30.7		μg/kg dry	30.7	16.6	1				"		Χ
11100-14-4	Aroclor-1268	< 30.7		μg/kg dry	30.7	30.2	1	II		ı	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	110			30-15	0 %		н	н		"		

Sample Identification SED-DOWNSTREAM-01-10-02-14 SB97409-01		4		Client Project # 60225155		<u>Matrix</u> Soil		ection Date -Oct-14 11			ceived Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC GC											
	ated Biphenyls												
	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	140			30-15	0 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	
2051-24-3	Decachlorobiphenyl (Sr)	140			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	0 %		u .		ı	"		
Total Met	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 2.05		mg/kg dry	2.05	0.195	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Χ
7440-38-2	Arsenic	< 2.05		mg/kg dry	2.05	0.724	1	п			"		Χ
7440-39-3	Barium	70.8		mg/kg dry	1.36	0.248	1			п	"		Χ
7440-41-7	Beryllium	< 0.682		mg/kg dry	0.682	0.0474	1			п	"		Χ
7440-43-9	Cadmium	< 0.682		mg/kg dry	0.682	0.0913	1			ıı	"		Χ
7440-47-3	Chromium	28.3		mg/kg dry	1.36	0.247	1	п			"		Χ
7440-50-8	Copper	25.1		mg/kg dry	1.36	0.187	1	п			"		Χ
7439-97-6	Mercury	< 0.0399		mg/kg dry	0.0399	0.0039	1	SW846 7471B		15-Oct-14	LR	1423838	Х
7440-02-0	Nickel	9.30		mg/kg dry	1.36	0.190	1	SW846 6010C		15-Oct-14	SMR	1423837	Х
7439-92-1	Lead	32.3		mg/kg dry	2.05	0.949	1				"		Х
7440-36-0	Antimony	< 6.82		mg/kg dry	6.82	1.05	1				"		Х
7782-49-2	Selenium	< 2.05		mg/kg dry	2.05	0.964	1				"		Χ
7440-28-0	Thallium	< 4.09		mg/kg dry	4.09	1.44	1				"		Χ
7440-62-2	Vanadium	19.1		mg/kg dry	2.05	0.305	1				"		Χ
7440-66-6	Zinc	52.5	R06	mg/kg dry	4.91	0.341	1				"		Χ
General C	Chemistry Parameters			3 3 7									
	% Solids	64.4		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423384	
Subcontra	acted Analyses												
	erformed by Spectrum Analytic	cal Inc - Nor	th Kingstov	vn RI									
muiysis po	Percent Moisture	28	in Kingsion	PCT	10	0.050	1	ASTM D2216		07-Oct-14	KP	R84870	
Subcontract	ed Analyses							PMOIST					
	by method SW3545A												
Analysis p	erformed by Spectrum Analytic			vn, RI									
91-20-3	Naphthalene	< 90	U	ug/Kg	90	27	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
91-57-6	2-Methylnaphthalene	< 90	U	ug/Kg	90	27	1	п		п	"		
208-96-8	Acenaphthylene	100		ug/Kg	90	24	1	n .			"		
83-32-9	Acenaphthene	130		ug/Kg	90	25	1	n .			"		
86-73-7	Fluorene	260		ug/Kg	90	24	1				"		
85-01-8	Phenanthrene	3,700		ug/Kg	90	27	1	п			"		
120-12-7	Anthracene	670		ug/Kg	90	26	1			н	"		
206-44-0	Fluoranthene	6,800		ug/Kg	90	41	1				"		
129-00-0	Pyrene	5,000		ug/Kg	90	30	1	II .			"		
56-55-3	Benzo(a)anthracene	2,100		ug/Kg	90	36	1	п			"		
218-01-9	Chrysene	2,600		ug/Kg	90	60	1	и			"		
205-99-2	Benzo(b)fluoranthene	3,100		ug/Kg	90	44	1			ıı	"		
207-08-9	Benzo(k)fluoranthene	1,300		ug/Kg	90	36	1			ıı	"		
50-32-8	Benzo(a)pyrene	2,100		ug/Kg	90	26	1	п			"		
193-39-5	Indeno(1,2,3-cd)pyrene	2,000		ug/Kg	90	30	1	п			"		
53-70-3	Dibenzo(a,h)anthracene	280		ug/Kg	90	30	1	п		и	"		

	<u>lentification</u> WNSTREAM-01-10-02 -01	-14			<u>Project #</u> 5155		<u>Matrix</u> Soil		ection Date -Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontracte Prepared	ed Analyses by method SW3545A												
Analysis pe	erformed by Spectrum Anal	ytical, Inc No	rth Kingstowr	ı, RI									
191-24-2	Benzo(g,h,i)perylene	1,100		ug/Kg	90	30	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 90	U	ug/Kg	90	27	1	ı			"		
Surrogate rec	overies:												
4165-60-0	Nitrobenzene-d5	62.4			45-13	5 %							
321-60-8	2-Fluorobiphenyl	52.0			45-13	5 %					"		
1718-51-0	Terphenyl-d14	65.8			45-13	5 %		п			"		

11096-82-5	Aroclor-1260	< 48.1	μg/kg dry	48.1	34.4	1		"	"	Χ
37324-23-5	Aroclor-1262	< 48.1	μg/kg dry	48.1	26.1	1		"	"	Χ
11100-14-4	Aroclor-1268	< 48.1	μg/kg dry	48.1	47.3	1	ı	ıı	"	Χ
Surrogate red	coveries:									
10386-84-2	4,4-DB-Octafluorobiphenyl	90		30-150	%				"	

30-150 %

44.9

40.9

43.2

21.4

26.1

30.4

1

1

1

1

1

SW846 8082A

03-Oct-14

09-Oct-14

IMR

1423473

Χ

Χ

Χ

Χ

Χ

Χ

48.1

48.1

48.1

48.1

48.1

48.1

μg/kg dry

μg/kg dry

μg/kg dry

μg/kg dry

μg/kg dry

μg/kg dry

2051-24-3

12674-11-2

11104-28-2

11141-16-5

53469-21-9

12672-29-6

11097-69-1

Decachlorobiphenyl (Sr)

Prepared by method SW846 3540C

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

[2C]
Polychlorinated Biphenyls

38

< 48.1

< 48.1

< 48.1

< 48.1

< 48 1

< 48.1

SED-DOV	Sample Identification SED-DOWNSTREAM-02-10-01-14 SB97409-02			Client Project # 60225155			<u>Matrix</u> Soil		ection Date/ -Oct-14 18:			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC GC											
	ted Biphenyls												
	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	0 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %		и			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	55			30-15	0 %		u .			"		
Total Meta	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 3.63		mg/kg dry	3.63	0.346	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Χ
7440-38-2	Arsenic	6.45		mg/kg dry	3.63	1.28	1	п			"		Χ
7440-39-3	Barium	229		mg/kg dry	2.42	0.440	1	п			"		Χ
7440-41-7	Beryllium	< 1.21		mg/kg dry	1.21	0.0842	1				"		Χ
7440-43-9	Cadmium	< 1.21		mg/kg dry	1.21	0.162	1				"		Х
7440-47-3	Chromium	38.3		mg/kg dry	2.42	0.438	1	п			"		Х
7440-50-8	Copper	81.7		mg/kg dry	2.42	0.332	1	п			"		Х
7439-97-6	Mercury	0.155		mg/kg dry	0.0659	0.0065	1	SW846 7471B		15-Oct-14	LR	1423838	Χ
7440-02-0	Nickel	21.9		mg/kg dry	2.42	0.336	1	SW846 6010C		15-Oct-14	SMR	1423837	Х
7439-92-1	Lead	183		mg/kg dry	3.63	1.68	1				"		Х
7440-36-0	Antimony	< 12.1		mg/kg dry	12.1	1.86	1				"		Х
7782-49-2	Selenium	< 3.63		mg/kg dry	3.63	1.71	1				"		Х
7440-28-0	Thallium	< 7.26		mg/kg dry	7.26	2.55	1				"		Х
7440-62-2	Vanadium	40.6		mg/kg dry	3.63	0.542	1				"		Х
7440-66-6	Zinc	208	R06	mg/kg dry	8.71	0.605	1				"		Х
General C	hemistry Parameters			0 0 7									
	% Solids	39.4		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423384	
Subcontra	cted Analyses												
	erformed by Spectrum Analytic	cal Inc - No	rth Kingstou	n RI									
maiysis pe	Percent Moisture	62	rın Kingsion	PCT	10	0.050	1	ASTM D2216		07-Oct-14	KP	R84870	
Subcontracte	ed Analyses							PMOIST					
	by method SW3545A												
Analysis pe	erformed by Spectrum Analytic	cal, Inc No	rth Kingstow	n, RI									
91-20-3	Naphthalene	< 170	U	ug/Kg	170	52	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
91-57-6	2-Methylnaphthalene	< 170	U	ug/Kg	170	52	1				"		
208-96-8	Acenaphthylene	< 170	U	ug/Kg	170	46	1	и			"		
83-32-9	Acenaphthene	< 170	U	ug/Kg	170	47	1	и			"		
86-73-7	Fluorene	< 170	U	ug/Kg	170	45	1	п			"		
85-01-8	Phenanthrene	1,400		ug/Kg	170	51	1	п			"		
120-12-7	Anthracene	310		ug/Kg	170	50	1	и			"		
206-44-0	Fluoranthene	2,500		ug/Kg	170	78	1	п			"		
129-00-0	Pyrene	1,800		ug/Kg	170	57	1	п			"		
56-55-3	Benzo(a)anthracene	910		ug/Kg	170	68	1	п			"		
218-01-9	Chrysene	970		ug/Kg	170	110	1	п			"		
205-99-2	Benzo(b)fluoranthene	1,200		ug/Kg	170	83	1	п			"		
207-08-9	Benzo(k)fluoranthene	570		ug/Kg	170	68	1				"		
50-32-8	Benzo(a)pyrene	850		ug/Kg	170	50	1				"		
-				ug, i ig	1.5		•						
193-39-5	Indeno(1,2,3-cd)pyrene	740		ug/Kg	170	57	1						

-	<u>lentification</u> WNSTREAM-02-10-01 -02	-14			<u>Project #</u> 5155		<u>Matrix</u> Soil		ection Date -Oct-14 18			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
Prepared	ed Analyses by method SW3545A												
, ,	erformed by Spectrum Anal	•	rth Kingstown										
191-24-2	Benzo(g,h,i)perylene	620		ug/Kg	170	57	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 170	U	ug/Kg	170	51	1	п			"		
Surrogate rec	coveries:												
4165-60-0	Nitrobenzene-d5	62.8			45-13	5 %		п			"		
321-60-8	2-Fluorobiphenyl	62.3			45-13	5 %		п			"		
1718-51-0	Terphenyl-d14	61.8			45-13	5 %					"		

(Sr)

Sample Identification SED-DOWNSTREAM-03-10-01-1 SB97409-03		4		<u>Client Project #</u> 60225155		<u>Matrix</u> Soil		ection Date -Oct-14 17			ceived Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	135			30-15	50 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		п			"		
Total Met	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 11.3		mg/kg dry	11.3	1.08	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Χ
7440-38-2	Arsenic	13.6		mg/kg dry	11.3	4.01	1	п			"		Χ
7440-39-3	Barium	719		mg/kg dry	7.56	1.38	1				•		Χ
7440-41-7	Beryllium	< 3.78		mg/kg dry	3.78	0.263	1	п			"		Х
7440-43-9	Cadmium	< 3.78		mg/kg dry	3.78	0.506	1				"		Χ
7440-47-3	Chromium	91.8		mg/kg dry	7.56	1.37	1	п			"		Х
7440-50-8	Copper	416		mg/kg dry	7.56	1.04	1	п			"		Χ
7439-97-6	Mercury	0.575		mg/kg dry	0.219	0.0216	1	SW846 7471B		15-Oct-14	LR	1423838	Χ
7440-02-0	Nickel	56.3		mg/kg dry	7.56	1.05	1	SW846 6010C		15-Oct-14	SMR	1423837	Χ
7439-92-1	Lead	273		mg/kg dry	11.3	5.26	1				"		Χ
7440-36-0	Antimony	< 37.8		mg/kg dry	37.8	5.80	1				"		Χ
7782-49-2	Selenium	< 11.3		mg/kg dry	11.3	5.34	1				"		Χ
7440-28-0	Thallium	< 22.7		mg/kg dry	22.7	7.97	1				"		Х
7440-62-2	Vanadium	95.3		mg/kg dry	11.3	1.69	1				"		Х
7440-66-6	Zinc	580	R06	mg/kg dry	27.2	1.89	1				"		Х
General C	Chemistry Parameters			3 3 . ,									
	% Solids	12.6		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423384	
Subcontra	acted Analyses												
	erformed by Spectrum Analytic	cal Inc - No	orth Kingston	n RI									
maiysis pe	Percent Moisture	85	rin Kingsion	PCT	10	0.050	1	ASTM D2216 PMOIST		07-Oct-14	KP	R84870	
	red Analyses							TWOIST					
	by method SW3545A												
	erformed by Spectrum Analytic		_	n, RI									
91-20-3	Naphthalene	< 410	U	ug/Kg	410	130	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
91-57-6	2-Methylnaphthalene	< 410	U	ug/Kg	410	130	1	II .			"		
208-96-8	Acenaphthylene	< 410	U	ug/Kg	410	110	1	п		"	"		
83-32-9	Acenaphthene	< 410	U	ug/Kg	410	110	1	· ·			"		
86-73-7	Fluorene	< 410	U	ug/Kg	410	110	1	п			"		
85-01-8	Phenanthrene	670		ug/Kg	410	120	1	п			"		
120-12-7	Anthracene	< 410	U	ug/Kg	410	120	1	н			"		
206-44-0	Fluoranthene	2,200		ug/Kg	410	190	1	п			"		
129-00-0	Pyrene	1,800		ug/Kg	410	140	1	п			"		
56-55-3	Benzo(a)anthracene	810		ug/Kg	410	160	1				"		
218-01-9	Chrysene	1,000		ug/Kg	410	280	1	п			"		
205-99-2	Benzo(b)fluoranthene	1,400		ug/Kg	410	200	1	и			"		
207-08-9	Benzo(k)fluoranthene	690		ug/Kg	410	160	1	и			"		
50-32-8	Benzo(a)pyrene	810		ug/Kg	410	120	1				"		
193-39-5	Indeno(1,2,3-cd)pyrene	830		ug/Kg	410	140	1				"		
53-70-3	Dibenzo(a,h)anthracene	< 410	U	ug/Kg	410	140	1	п			"		

	<u>Identification</u> DWNSTREAM-03-10-01 Э-03	-14			<u>Project #</u> 25155		<u>Matrix</u> Soil	· -	ection Date -Oct-14 17			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontr	acted Analyses												
	cted Analyses d by method SW3545A												
Analysis p	performed by Spectrum Anal	lytical, Inc N	orth Kingstowi	ı, RI									
191-24-2	Benzo(g,h,i)perylene	610		ug/Kg	410	140	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 410	U	ug/Kg	410	120	1				"		
Surrogate re	ecoveries:												
4165-60-0	Nitrobenzene-d5	53.2			45-13	95 %				п	"		
321-60-8	2-Fluorobiphenyl	51.6			45-13	95 %		н			"		
1718-51-0	Terphenyl-d14	59.8			45-13	95 %		н			"		

30-150 %

μg/kg dry

114

114

114

114

114

114

114

114

97.2

103

50.8

62.1

72.1

81.7

61.9

112

1

1

1

1

1

1

1

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

11104-28-2

11141-16-5

53469-21-9

12672-29-6

11097-69-1

11096-82-5

37324-23-5

11100-14-4

Surrogate recoveries:

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

Aroclor-1262

Aroclor-1268

(Sr)

4,4-DB-Octafluorobiphenyl

< 114

< 114

< 114

< 114

< 114

< 114

< 114

< 114

85

Sample Identification SED-DOWNSTREAM-04-10-01-14 SB97409-04		1		<u>Client Project #</u> 60225155			<u>Matrix</u> Soil		ection Date			ceived Oct-14	
CAS No.	-04 ————————————————————————————————————	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivoleti	ile Organic Compounds by C									<u> </u>			
	ted Biphenyls	ic											
	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	0 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	60 %		п			"		
Total Met	als by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 7.35		mg/kg dry	7.35	0.701	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Χ
7440-38-2	Arsenic	10.0		mg/kg dry	7.35	2.60	1	п			"		Χ
7440-39-3	Barium	502		mg/kg dry	4.90	0.892	1				"		Χ
7440-41-7	Beryllium	< 2.45		mg/kg dry	2.45	0.171	1				"		Χ
7440-43-9	Cadmium	< 2.45		mg/kg dry	2.45	0.328	1				"		Χ
7440-47-3	Chromium	74.2		mg/kg dry	4.90	0.887	1	п			"		Х
7440-50-8	Copper	256		mg/kg dry	4.90	0.672	1				"		Χ
7439-97-6	Mercury	0.409		mg/kg dry	0.167	0.0165	1	SW846 7471B		15-Oct-14	LR	1423838	Χ
7440-02-0	Nickel	44.1		mg/kg dry	4.90	0.681	1	SW846 6010C		15-Oct-14	SMR	1423837	Χ
7439-92-1	Lead	212		mg/kg dry	7.35	3.41	1	п			"		Χ
7440-36-0	Antimony	< 24.5		mg/kg dry	24.5	3.77	1				"		Χ
7782-49-2	Selenium	< 7.35		mg/kg dry	7.35	3.47	1				"		Χ
7440-28-0	Thallium	< 14.7		mg/kg dry	14.7	5.17	1				"		Х
7440-62-2	Vanadium	80.8		mg/kg dry	7.35	1.10	1				"		Х
7440-66-6	Zinc	432	R06	mg/kg dry	17.6	1.23	1				"		Х
General C	hemistry Parameters			3 3 . 7									
	% Solids	17.3		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423385	
Subcontra	cted Analyses												
	erformed by Spectrum Analytic	cal Inc - No	rth Kingston	vn RI									
maiysis pe	Percent Moisture	84	in Hingston	PCT	10	0.050	1	ASTM D2216		07-Oct-14	KP	R84870	
Subcontract	ed Analyses							PMOIST					
Prepared	by method SW3545A												
Analysis pe	erformed by Spectrum Analytic	cal, Inc No	_	vn, RI									
91-20-3	Naphthalene	< 390	U	ug/Kg	390	120	1	SW846 8270D SIM	07-Oct-14	09-Oct-14	TM	79383	
91-57-6	2-Methylnaphthalene	< 390	U	ug/Kg	390	120	1	н			"		
208-96-8	Acenaphthylene	< 390	U	ug/Kg	390	110	1	n .			"		
83-32-9	Acenaphthene	< 390	U	ug/Kg	390	110	1	n .			"		
86-73-7	Fluorene	610		ug/Kg	390	100	1				"		
85-01-8	Phenanthrene	9,500		ug/Kg	390	120	1	п			"		
120-12-7	Anthracene	1,400		ug/Kg	390	110	1				"		
206-44-0	Fluoranthene	24,000		ug/Kg	390	180	1				"		
129-00-0	Pyrene	19,000		ug/Kg	390	130	1	II .			"		
56-55-3	Benzo(a)anthracene	9,600		ug/Kg	390	160	1	п			"		
218-01-9	Chrysene	9,300		ug/Kg	390	260	1	и			"		
205-99-2	Benzo(b)fluoranthene	13,000		ug/Kg	390	190	1				"		
207-08-9	Benzo(k)fluoranthene	6,500		ug/Kg	390	160	1				"		
50-32-8	Benzo(a)pyrene	9,100		ug/Kg	390	110	1	п			"		
193-39-5	Indeno(1,2,3-cd)pyrene	7,900		ug/Kg	390	130	1	п			"		
53-70-3	Dibenzo(a,h)anthracene	< 390	U	ug/Kg	390	130	1	н					

	dentification WNSTREAM-04-10-01 -04	-14			<u>Project #</u> 25155		<u>Matrix</u> Soil	-	ection Date -Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
	ted Analyses by method SW3545A												
Analysis p	erformed by Spectrum Anal	lytical, Inc No	orth Kingstow	n, RI									
191-24-2	Benzo(g,h,i)perylene	6,000		ug/Kg	390	130	1	SW846 8270D SIM	07-Oct-14	09-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 390	U	ug/Kg	390	120	1	ı			"		
Surrogate red	coveries:												
4165-60-0	Nitrobenzene-d5	160	S		45-13	95 %		п			"		
321-60-8	2-Fluorobiphenyl	131			45-13	95 %		п		и	"		
1718-51-0	Terphenyl-d14	97.5			45-13	15 %		и			"		

30-150 %

10386-84-2

(Sr)

4,4-DB-Octafluorobiphenyl

85

SED-DOWNSTREAM-05-10-01-14 SB97409-05			<u>Client Project #</u> 60225155			<u>Matrix</u> Soil	Collection Date/Time 01-Oct-14 15:15			Received 02-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	60 %		ı		п	"		
Total Met	tals by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 8.11		mg/kg dry	8.11	0.773	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Χ
7440-38-2	Arsenic	14.2		mg/kg dry	8.11	2.87	1	п			"		Χ
7440-39-3	Barium	823		mg/kg dry	5.41	0.984	1	и			"		Χ
7440-41-7	Beryllium	< 2.70		mg/kg dry	2.70	0.188	1	и			"		Χ
7440-43-9	Cadmium	2.83		mg/kg dry	2.70	0.362	1	п			"		Χ
7440-47-3	Chromium	95.5		mg/kg dry	5.41	0.979	1			н	"		Χ
7440-50-8	Copper	353		mg/kg dry	5.41	0.741	1				"		Χ
7439-97-6	Mercury	0.564		mg/kg dry	0.165	0.0162	1	SW846 7471B		15-Oct-14	LR	1423838	Χ
7440-02-0	Nickel	57.2		mg/kg dry	5.41	0.752	1	SW846 6010C		15-Oct-14	SMR	1423837	Χ
7439-92-1	Lead	305		mg/kg dry	8.11	3.76	1	п			"		Χ
7440-36-0	Antimony	< 27.0		mg/kg dry	27.0	4.15	1	п			"		Χ
7782-49-2	Selenium	< 8.11		mg/kg dry	8.11	3.82	1	п			"		Χ
7440-28-0	Thallium	< 16.2		mg/kg dry	16.2	5.70	1	и			"		Х
7440-62-2	Vanadium	101		mg/kg dry	8.11	1.21	1	и			"		Χ
7440-66-6	Zinc	543	R06	mg/kg dry	19.5	1.35	1	и			"		Χ
General C	Chemistry Parameters												
	% Solids	15.8		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423385	
Subcontra	acted Analyses												
	erformed by Spectrum Analytic	cal, Inc No	rth Kingstov	vn, RI									
J 1	Percent Moisture	86	O	PCT	10	0.050	1	ASTM D2216 PMOIST		07-Oct-14	KP	R84870	
	ted Analyses												
	by method SW3545A		d W	D.I.									
91-20-3	erformed by Spectrum Analytic Naphthalene	< 460	U Lingsion		400	140	1	SW846 8270D SIM	07-Oct-14	09-Oct-14	TM	79383	
91-57-6	•		U	ug/Kg	460			30040 6270D SIIVI	07-Oct-14 "	09-OCI-14	"	/ 9303	
208-96-8	2-Methylnaphthalene	< 460 < 460	U	ug/Kg	460	140	1				"		
83-32-9	Acenaphthylene		U	ug/Kg	460	120	1				"		
	Acenaphthene	< 460	U	ug/Kg	460	120	1						
86-73-7	Fluorene	< 460	U	ug/Kg	460	120	1	"			"		
85-01-8	Phenanthrene	2,200		ug/Kg	460	140	1		-		"		
120-12-7	Anthracene	670		ug/Kg	460	130	1				"		
206-44-0	Fluoranthene	6,100		ug/Kg	460	210	1						
129-00-0	Pyrene	4,800		ug/Kg	460	150	1						
56-55-3	Benzo(a)anthracene	1,900		ug/Kg	460	180	1	"					
218-01-9	Chrysene	3,100		ug/Kg	460	310	1	п			"		
205-99-2	Benzo(b)fluoranthene	4,100		ug/Kg	460	220	1	п			"		
207-08-9	Benzo(k)fluoranthene	1,700		ug/Kg	460	180	1	II			"		
50-32-8	Benzo(a)pyrene	2,300		ug/Kg	460	130	1	"		H .	"		
193-39-5	Indeno(1,2,3-cd)pyrene	2,300		ug/Kg	460	150	1	"		н	"		
53-70-3	Dibenzo(a,h)anthracene	< 460	U	ug/Kg	460	150	1				"		

	Identification DWNSTREAM-05-10-01 9-05	<u>Client Project #</u> 60225155			<u>Matrix</u> Soil	·			Received 02-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontr	acted Analyses												
Prepared	oted Analyses d by method SW3545A Derformed by Spectrum Anal	lytical, Inc No	orth Kingstowi	ı, RI									
191-24-2	Benzo(g,h,i)perylene	1,900	Ö	ug/Kg	460	150	1	SW846 8270D SIM	07-Oct-14	09-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 460	U	ug/Kg	460	140	1	п			"		
Surrogate re	ecoveries:												
4165-60-0	Nitrobenzene-d5	63.0			45-13	15 %					"		
•	Nitrobenzene-d5 2-Fluorobiphenyl	63.0 81.7			45-13 45-13			1		11	"		

Sample Identification SED-DOWNSTREAM-06-10-01-14 SB97409-06				<u>Client Project #</u> 60225155			<u>Matrix</u> Soil	Collection Date/Time 01-Oct-14 12:30			Received 02-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.		
Semivolati	le Organic Compounds by C	GC .													
	ted Biphenyls by method SW846 3540C														
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	50 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473			
2051-24-3	Decachlorobiphenyl (Sr)	80			30-15	0 %					"				
2051-24-3	Decachlorobiphenyl (Sr) [2C]	65			30-15	60 %					"				
Total Meta	als by EPA 6000/7000 Series	Methods													
7440-22-4	Silver	< 21.6		mg/kg dry	21.6	2.06	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Χ		
7440-38-2	Arsenic	< 21.6		mg/kg dry	21.6	7.64	1	п		п	"		Χ		
7440-39-3	Barium	815		mg/kg dry	14.4	2.62	1	н		ı	"		Χ		
7440-41-7	Beryllium	< 7.19		mg/kg dry	7.19	0.501	1	н		ı	"		Χ		
7440-43-9	Cadmium	< 7.19		mg/kg dry	7.19	0.964	1	п			"		Χ		
7440-47-3	Chromium	58.6		mg/kg dry	14.4	2.60	1				"		Χ		
7440-50-8	Copper	408		mg/kg dry	14.4	1.97	1				"		Χ		
7439-97-6	Mercury	0.577		mg/kg dry	0.441	0.0434	1	SW846 7471B		15-Oct-14	LR	1423838	Χ		
7440-02-0	Nickel	47.2		mg/kg dry	14.4	2.00	1	SW846 6010C		15-Oct-14	SMR	1423837	Χ		
7439-92-1	Lead	148		mg/kg dry	21.6	10.0	1			п	"		Χ		
7440-36-0	Antimony	< 71.9		mg/kg dry	71.9	11.0	1			п	"		Χ		
7782-49-2	Selenium	< 21.6		mg/kg dry	21.6	10.2	1			п	"		Χ		
7440-28-0	Thallium	< 43.2		mg/kg dry	43.2	15.2	1	п			"		Χ		
7440-62-2	Vanadium	82.4		mg/kg dry	21.6	3.22	1	п			"		Χ		
7440-66-6	Zinc	497	R06	mg/kg dry	51.8	3.60	1	п			"		Х		
General C	hemistry Parameters														
	% Solids	6.7		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423385			
Subcontra	cted Analyses														
Analysis pe	erformed by Spectrum Analytic	cal, Inc No.	rth Kingstow	n, RI											
	Percent Moisture	94	_	PCT	10	0.050	1	ASTM D2216 PMOIST		07-Oct-14	KP	R84870			
Subcontracte Prepared	ed Analyses by method SW3545A														
Analysis pe	erformed by Spectrum Analytic	cal, Inc No	rth Kingstow	n, RI											
91-20-3	Naphthalene	< 1000	U	ug/Kg	1000	310	1	SW846 8270D SIM	07-Oct-14	09-Oct-14	TM	79383			
91-57-6	2-Methylnaphthalene	< 1000	U	ug/Kg	1000	310	1	п			"				
208-96-8	Acenaphthylene	< 1000	U	ug/Kg	1000	280	1	п			"				
83-32-9	Acenaphthene	< 1000	U	ug/Kg	1000	280	1			н	"				
86-73-7	Fluorene	< 1000	U	ug/Kg	1000	270	1			п	"				
85-01-8	Phenanthrene	1,500		ug/Kg	1000	310	1								
120-12-7	Anthracene	< 1000	U	ug/Kg	1000	300	1	п			"				
206-44-0	Fluoranthene	3,500		ug/Kg	1000	470	1	п			"				
129-00-0	Pyrene	2,600		ug/Kg	1000	340	1	п			"				
56-55-3	Benzo(a)anthracene	980	J	ug/Kg	1000	410	1	п			"				
218-01-9	Chrysene	1,900		ug/Kg	1000	690	1	п			"				
	•	2,200		ug/Kg	1000	500	1	п			"				
205-99-2	Benzo(b)fluoranthene	2,200													
205-99-2 207-08-9	Benzo(b)fluoranthene Benzo(k)fluoranthene	< 1000	U		1000	410	1	п			"				
	Benzo(k)fluoranthene	< 1000	U U	ug/Kg							"				
207-08-9	• •	•			1000 1000 1000	410 300 340	1 1 1								

	dentification WNSTREAM-06-10-01 -06		<u>Client Project #</u> 60225155			<u>Matrix</u> Soil	·			Received 02-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
Prepared	ted Analyses by method SW3545A erformed by Spectrum Anal	'vtical Inc - No	rth Kinostowi	n RI									
191-24-2	Benzo(g,h,i)perylene	< 1000	U	ug/Kg	1000	340	1	SW846 8270D SIM	07-Oct-14	09-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 1000	U	ug/Kg	1000	310	1	ı			"		
Surrogate rec	coveries:												
4165-60-0	Nitrobenzene-d5	10.9	S		45-13	95 %				п	"		
321-60-8	2-Fluorobiphenyl	97.7		45-135 %		95 %				и	"		
1718-51-0	Terphenyl-d14	79.2			45-13	15 %					"		

Client Project # 60225155

Matrix Soil Collection Date/Time 02-Oct-14 11:20 Received 02-Oct-14

SB97409	-07			0022	3133		3011	02	2-001-14 11	.20	02-	JCI-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by C	GC											
	rine Pesticides												
<u> </u>	by method SW846 3545A alpha-BHC [2C]	< 8.10		ualka da	8.10	0.858	1	SW846 8081B	08-Oct-14	14-Oct-14	TG	1423741	Х
319-85-7	beta-BHC [2C]	< 8.10		μg/kg dry μg/kg dry	8.10	1.01	1	300040 0001B	00-OCI-14	14-Oct-14 "	"	1423741	X
319-86-8	delta-BHC [2C]	< 8.10			8.10	0.915	1						X
58-89-9	gamma-BHC (Lindane) [2C]	< 4.86		μg/kg dry μg/kg dry	4.86	0.852	1	п			"		X
76-44-8	Heptachlor [2C]	< 8.10		μg/kg dry	8.10	0.941	1				"		Χ
309-00-2	Aldrin [2C]	< 8.10		μg/kg dry	8.10	0.905	1						Х
1024-57-3	Heptachlor epoxide [2C]	< 8.10		μg/kg dry	8.10	0.939	1						Х
959-98-8	Endosulfan I [2C]	< 8.10		μg/kg dry	8.10	0.918	1						Х
60-57-1	Dieldrin [2C]	< 8.10		μg/kg dry	8.10	1.15	1						Х
72-55-9	4,4'-DDE (p,p') [2C]	< 8.10		μg/kg dry	8.10	0.837	1						Х
72-20-8	Endrin [2C]	< 13.0		μg/kg dry μg/kg dry	13.0	1.03	1						X
33213-65-9	Endosulfan II [2C]	< 13.0		μg/kg dry μg/kg dry	13.0	0.905	1						X
72-54-8	4,4'-DDD (p,p') [2C]	< 13.0			13.0	0.842	1						X
1031-07-8	Endosulfan sulfate [2C]	< 13.0		μg/kg dry			1						X
50-29-3	4,4'-DDT (p,p') [2C]	< 13.0		μg/kg dry	13.0	0.920							X
72-43-5	Methoxychlor [2C]	< 13.0		μg/kg dry	13.0 13.0	0.807 1.05	1						X
53494-70-5		< 13.0		μg/kg dry			1						X
7421-93-4	Endrin ketone [2C]			μg/kg dry	13.0	0.875							
5103-71-9	Endrin aldehyde [2C]	< 13.0		μg/kg dry	13.0	1.49	1						X
	alpha-Chlordane [2C]	< 8.10		μg/kg dry	8.10	0.930	1				"		X
5566-34-7	gamma-Chlordane [2C]	< 8.10		μg/kg dry	8.10	1.04	1						X
8001-35-2	Toxaphene [2C]	< 162		μg/kg dry	162	66.2	1				"		X
57-74-9	Chlordane [2C]	< 32.4		μg/kg dry	32.4	27.4	1						Х
15972-60-8	Alachlor [2C]	< 8.10		μg/kg dry	8.10	1.26	1			-			
Surrogate rec													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	2	SGC		30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	69			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	9	SGC		30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	47			30-15	0 %		п			"		
	tted Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 31.1		μg/kg dry	31.1	29.1	1	SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	Х
11104-28-2	Aroclor-1221	< 31.1		μg/kg dry μg/kg dry	31.1	26.5	1	"	U3-OCI-14	U3-OCI-14	"	1420470	X
11141-16-5	Aroclor-1232	< 31.1		μg/kg dry μg/kg dry	31.1	28.0	1						X
53469-21-9	Aroclor-1242	< 31.1		μg/kg dry	31.1	13.8	1						Х
12672-29-6	Aroclor-1248	< 31.1			31.1		1						X
11097-69-1	Aroclor-1254	< 31.1		μg/kg dry μg/kg dry	31.1	16.9 19.7	1						X
11096-82-5	Aroclor-1260	< 31.1		μg/kg dry μg/kg dry	31.1	22.3	1						X
37324-23-5	Aroclor-1262	< 31.1		μg/kg dry μg/kg dry	31.1	16.9	1						X
11100-14-4	Aroclor-1268	< 31.1											X
		> 01.1		μg/kg dry	31.1	30.6	1						
Surrogate rec													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	115			30-15	0 %		ı			"		

-	dentification WNSTREAM-01-10-02-1- 1-07	4-FD		Client P 6022.			<u>Matrix</u> Soil	·	ection Date -Oct-14 11			oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared 10386-84-2	by method SW846 3540C 4,4-DB-Octafluorobiphenyl	135			30-15	50 %		SW846 8082A	03-Oct-14	09-Oct-14	IMR	1423473	
7,0000 0 7 2	(Sr) [2C]	700			30-10	70		011040 0002A	03-001-14	09-001-14	IIVIIX	1420470	
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %		II		ı	"		
Total Met	tals by EPA 6000/7000 Series	Methods											
7440-22-4	Silver	< 2.21		mg/kg dry	2.21	0.210	1	SW846 6010C	09-Oct-14	15-Oct-14	SMR	1423837	Х
7440-38-2	Arsenic	< 2.21		mg/kg dry	2.21	0.781	1			ıı	"		Х
7440-39-3	Barium	71.7		mg/kg dry	1.47	0.268	1				"		Χ
7440-41-7	Beryllium	< 0.736		mg/kg dry	0.736	0.0512	1			u	"		Χ
7440-43-9	Cadmium	< 0.736		mg/kg dry	0.736	0.0986	1			u	"		Χ
7440-47-3	Chromium	18.1		mg/kg dry	1.47	0.266	1			ıı	"		Х
7440-50-8	Copper	18.7		mg/kg dry	1.47	0.202	1			ıı	"		Х
7439-97-6	Mercury	< 0.0440		mg/kg dry	0.0440	0.0043	1	SW846 7471B		15-Oct-14	LR	1423838	Х
7440-02-0	Nickel	8.64		mg/kg dry	1.47	0.205	1	SW846 6010C		15-Oct-14	SMR	1423837	Χ
7439-92-1	Lead	23.1		mg/kg dry	2.21	1.02	1	п		и	"		Χ
7440-36-0	Antimony	< 7.36		mg/kg dry	7.36	1.13	1	п		и	"		Χ
7782-49-2	Selenium	< 2.21		mg/kg dry	2.21	1.04	1	п		и	"		Х
7440-28-0	Thallium	< 4.42		mg/kg dry	4.42	1.55	1	п		и	"		Х
7440-62-2	Vanadium	20.1		mg/kg dry	2.21	0.330	1			u	"		Х
7440-66-6	Zinc	50.0	R06	mg/kg dry	5.30	0.368	1			u	"		Х
General C	Chemistry Parameters												
	% Solids	61.4		%			1	SM2540 G Mod.	03-Oct-14	03-Oct-14	DT	1423385	
Subcontra	acted Analyses												
Analysis p	erformed by Spectrum Analyti	cal, Inc Nor	th Kingstow	n, RI									
	Percent Moisture	39	-	PCT	10	0.050	1	ASTM D2216 PMOIST		07-Oct-14	KP	R84870	
	ted Analyses												
	by method SW3545A												
	erformed by Spectrum Analyti		_										
91-20-3	Naphthalene	< 110	U	ug/Kg	110	33	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
91-57-6	2-Methylnaphthalene	< 110	U	ug/Kg	110	33	1			"	"		
208-96-8	Acenaphthylene	< 110	U	ug/Kg	110	29	1			ıı	"		
83-32-9	Acenaphthene	< 110	U	ug/Kg	110	29	1	п		"	"		
86-73-7	Fluorene	160		ug/Kg	110	28	1			ıı	"		
85-01-8	Phenanthrene	2,400		ug/Kg	110	32	1			ıı	"		
120-12-7	Anthracene	360		ug/Kg	110	31	1	ı		ıı	"		
206-44-0	Fluoranthene	5,000		ug/Kg	110	49	1	п		н	"		
129-00-0	Pyrene	3,900		ug/Kg	110	36	1	ı		ıı	"		
56-55-3	Benzo(a)anthracene	1,700		ug/Kg	110	42	1	ı		ıı	"		
218-01-9	Chrysene	2,000		ug/Kg	110	72	1	ı		u	"		
205-99-2	Benzo(b)fluoranthene	2,500		ug/Kg	110	52	1			u	"		
207-08-9	Benzo(k)fluoranthene	1,100		ug/Kg	110	42	1			u	"		
50-32-8	Benzo(a)pyrene	1,600		ug/Kg	110	31	1	ı		ıı	"		
193-39-5	Indeno(1,2,3-cd)pyrene	1,400		ug/Kg	110	36	1	II		ıı	"		
53-70-3	Dibenzo(a,h)anthracene	< 110	U	ug/Kg	110	36	1	п		II .			

	dentification WNSTREAM-01-10-02 1-07	-14-FD			Project # 25155		<u>Matrix</u> Soil		ection Date -Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	acted Analyses												
	ted Analyses by method SW3545A												
Analysis p	erformed by Spectrum Anal	lytical, Inc No	orth Kingstow	n, RI									
191-24-2	Benzo(g,h,i)perylene	1,100		ug/Kg	110	36	1	SW846 8270D SIM	07-Oct-14	08-Oct-14	TM	79383	
90-12-0	1-Methylnaphthalene	< 110	U	ug/Kg	110	32	1				"		
Surrogate red	coveries:												
4165-60-0	Nitrobenzene-d5	35.3	S		45-13	95 %		п			"		
321-60-8	2-Fluorobiphenyl	46.5			45-13	15 %					"		
1718-51-0	Terphenyl-d14	46.6			45-13	95 %					"		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1423473 - SW846 3540C										
Blank (1423473-BLK1)					Pre	pared: 03-Oct	-14 Analyzed:	04-Oct-14		
Aroclor-1016	< 19.9		μg/kg wet	19.9						
Aroclor-1016 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1221	< 19.9		μg/kg wet	19.9						
Aroclor-1221 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1232	< 19.9		μg/kg wet	19.9						
Aroclor-1232 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1242	< 19.9		μg/kg wet	19.9						
Aroclor-1242 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1248	< 19.9		μg/kg wet	19.9						
Aroclor-1248 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1254	< 19.9		μg/kg wet	19.9						
Aroclor-1254 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1260	< 19.9		μg/kg wet	19.9						
Aroclor-1260 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1262	< 19.9		μg/kg wet	19.9						
Aroclor-1262 [2C]	< 19.9		μg/kg wet	19.9						
Aroclor-1268	< 19.9		μg/kg wet	19.9						
Aroclor-1268 [2C]	< 19.9		μg/kg wet	19.9						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.9		μg/kg wet		19.9		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	16.9		μg/kg wet		19.9		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.9		μg/kg wet		19.9		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	13.9		μg/kg wet		19.9		70	30-150		
LCS (1423473-BS1)					Pre	pared: 03-Oct	-14 Analyzed:	04-Oct-14		
Aroclor-1016	220		μg/kg wet	19.4	243		91	40-140		
Aroclor-1016 [2C]	208		μg/kg wet	19.4	243		86	40-140		
Aroclor-1260	201		μg/kg wet	19.4	243		83	40-140		
Aroclor-1260 [2C]	181		μg/kg wet	19.4	243		74	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.5		μg/kg wet		19.4		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	16.5		μg/kg wet		19.4		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	17.5		μg/kg wet		19.4		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.5		μg/kg wet		19.4		80	30-150		
LCS Dup (1423473-BSD1)					Pre	pared: 03-Oct	-14 Analyzed:	04-Oct-14		
Aroclor-1016	261		μg/kg wet	19.6	245		107	40-140	16	30
Aroclor-1016 [2C]	205		μg/kg wet	19.6	245		84	40-140	2	30
Aroclor-1260	229		μg/kg wet	19.6	245		94	40-140	12	30
Aroclor-1260 [2C]	167		μg/kg wet	19.6	245		68	40-140	8	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.5		μg/kg wet		19.6		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.7		μg/kg wet		19.6		75	30-150		
atch 1423741 - SW846 3545A										
Blank (1423741-BLK1)					<u>P</u> re	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
alpha-BHC	< 4.97		μg/kg wet	4.97						
alpha-BHC [2C]	< 4.97		μg/kg wet	4.97						
beta-BHC	< 4.97		μg/kg wet	4.97						
beta-BHC [2C]	< 4.97		μg/kg wet	4.97						
delta-BHC	< 4.97		μg/kg wet	4.97						
delta-BHC [2C]	< 4.97		μg/kg wet	4.97						
gamma-BHC (Lindane)	< 2.98		μg/kg wet	2.98						
gamma-BHC (Lindane) [2C]	< 2.98		μg/kg wet	2.98						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1423741 - SW846 3545A										
Blank (1423741-BLK1)					Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Heptachlor	< 4.97		μg/kg wet	4.97						
Heptachlor [2C]	< 4.97		μg/kg wet	4.97						
Aldrin	< 4.97		μg/kg wet	4.97						
Aldrin [2C]	< 4.97		μg/kg wet	4.97						
Heptachlor epoxide	< 4.97		μg/kg wet	4.97						
Heptachlor epoxide [2C]	< 4.97		μg/kg wet	4.97						
Endosulfan I	< 4.97		μg/kg wet	4.97						
Endosulfan I [2C]	< 4.97		μg/kg wet	4.97						
Dieldrin	< 4.97		μg/kg wet	4.97						
Dieldrin [2C]	< 4.97		μg/kg wet	4.97						
4,4'-DDE (p,p')	< 4.97		μg/kg wet	4.97						
4,4'-DDE (p,p') [2C]	< 4.97		μg/kg wet	4.97						
Endrin	< 7.96		μg/kg wet	7.96						
Endrin [2C]	< 7.96		μg/kg wet	7.96						
Endosulfan II	< 7.96		μg/kg wet	7.96						
Endosulfan II [2C]	< 7.96		μg/kg wet	7.96						
4,4'-DDD (p,p')	< 7.96		μg/kg wet	7.96						
4,4'-DDD (p,p') [2C]	< 7.96		μg/kg wet	7.96						
Endosulfan sulfate	< 7.96		μg/kg wet	7.96						
Endosulfan sulfate [2C]	< 7.96		μg/kg wet	7.96						
4,4'-DDT (p,p')	< 7.96		μg/kg wet	7.96						
4,4'-DDT (p,p') [2C]	< 7.96		μg/kg wet	7.96						
Methoxychlor	< 7.96		μg/kg wet	7.96						
Methoxychlor [2C]	< 7.96		μg/kg wet	7.96						
Endrin ketone	< 7.96		μg/kg wet	7.96						
Endrin ketone [2C]	< 7.96		μg/kg wet	7.96						
Endrin aldehyde	< 7.96		μg/kg wet	7.96						
Endrin aldehyde [2C]	< 7.96		μg/kg wet	7.96						
alpha-Chlordane	< 4.97		μg/kg wet	4.97						
alpha-Chlordane [2C]	< 4.97		μg/kg wet	4.97						
gamma-Chlordane	< 4.97		μg/kg wet	4.97						
gamma-Chlordane [2C]	< 4.97		μg/kg wet	4.97						
Toxaphene	< 99.5		μg/kg wet	99.5						
Toxaphene [2C]	< 99.5		μg/kg wet	99.5						
Chlordane	< 19.9		μg/kg wet	19.9						
Chlordane [2C]	< 19.9		μg/kg wet	19.9						
Alachlor	< 4.97		μg/kg wet	4.97						
Alachlor [2C]	< 4.97		μg/kg wet	4.97						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	10.7		μg/kg wet		9.95		108	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	9.88		μg/kg wet		9.95		99	30-150		
Surrogate: Decachlorobiphenyl (Sr)	8.70		μg/kg wet		9.95		87	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	7.65		μg/kg wet		9.95		77	30-150		
LCS (1423741-BS1)					Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
alpha-BHC	20.6		μg/kg wet	4.97	24.9		83	40-140		
alpha-BHC [2C]	19.3		μg/kg wet	4.97	24.9		78	40-140		
beta-BHC	26.0		μg/kg wet	4.97	24.9		105	40-140		
beta-BHC [2C]	26.1		μg/kg wet	4.97	24.9		105	40-140		
delta-BHC	28.0		μg/kg wet	4.97	24.9		112	40-140		
delta-BHC [2C]	27.3		μg/kg wet	4.97	24.9		110	40-140		
gamma-BHC (Lindane)	20.8		μg/kg wet	2.98	24.9		84	40-140		
gamma-BHC (Lindane) [2C]	20.0		μg/kg wet	2.98	24.9		80	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1423741 - SW846 3545A										
LCS (1423741-BS1)					Pre	pared: 08-Oct-14	Analyzed:	: 09-Oct-14		
Heptachlor	20.0		μg/kg wet	4.97	24.9		80	40-140		
Heptachlor [2C]	19.3		μg/kg wet	4.97	24.9		78	40-140		
Aldrin	19.7		μg/kg wet	4.97	24.9		79	40-140		
Aldrin [2C]	19.2		μg/kg wet	4.97	24.9		77	40-140		
Heptachlor epoxide	19.4		μg/kg wet	4.97	24.9		78	40-140		
Heptachlor epoxide [2C]	19.6		μg/kg wet	4.97	24.9		79	40-140		
Endosulfan I	19.5		μg/kg wet	4.97	24.9		78	40-140		
Endosulfan I [2C]	19.4		μg/kg wet	4.97	24.9		78	40-140		
Dieldrin	19.0		μg/kg wet	4.97	24.9		76	40-140		
Dieldrin [2C]	19.1		μg/kg wet	4.97	24.9		77	40-140		
4,4'-DDE (p,p')	18.7		μg/kg wet	4.97	24.9		75	40-140		
4,4'-DDE (p,p') [2C]	19.1		μg/kg wet	4.97	24.9		77	40-140		
Endrin	17.7		μg/kg wet	7.96	24.9		71	40-140		
Endrin [2C]	18.6		μg/kg wet	7.96	24.9		75	40-140		
Endosulfan II	20.7		μg/kg wet	7.96	24.9		83	40-140		
Endosulfan II [2C]	20.9		μg/kg wet	7.96	24.9		84	40-140		
4,4'-DDD (p,p')	19.7		μg/kg wet	7.96	24.9		79	40-140		
4,4'-DDD (p,p') [2C]	21.0		μg/kg wet	7.96	24.9		85	40-140		
Endosulfan sulfate	23.2		μg/kg wet	7.96	24.9		93	40-140		
Endosulfan sulfate [2C]	24.5		μg/kg wet	7.96	24.9		99	40-140		
4,4'-DDT (p,p')	16.7		μg/kg wet	7.96	24.9		67	40-140		
4,4'-DDT (p,p') [2C]	17.5		μg/kg wet	7.96	24.9		70	40-140		
Methoxychlor	18.9		μg/kg wet	7.96	24.9		76	40-140		
Methoxychlor [2C]	19.4		μg/kg wet	7.96	24.9		78	40-140		
Endrin ketone	20.6		μg/kg wet	7.96	24.9		83	40-140		
Endrin ketone [2C]	20.7		μg/kg wet	7.96	24.9		83	40-140		
Endrin aldehyde	21.2		μg/kg wet	7.96	24.9		85	40-140		
Endrin aldehyde [2C]	22.1		μg/kg wet	7.96	24.9		89	40-140		
alpha-Chlordane	18.9		μg/kg wet	4.97	24.9		76	40-140		
alpha-Chlordane [2C]	18.8		μg/kg wet	4.97	24.9		76	40-140		
gamma-Chlordane	19.6		μg/kg wet μg/kg wet	4.97	24.9		79	40-140		
gamma-Chlordane [2C]	19.5			4.97	24.9		78	40-140		
Alachlor	23.7		μg/kg wet μg/kg wet	4.97	24.9		95	40-140		
Alachlor [2C]				4.97			90			
	22.5		μg/kg wet	4.97	24.9			40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	8.44		μg/kg wet		9.95		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	7.95		μg/kg wet		9.95		80	30-150		
Surrogate: Decachlorobiphenyl (Sr)	7.82		μg/kg wet		9.95		79	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	7.06		μg/kg wet		9.95		71	30-150		
LCS Dup (1423741-BSD1)					Pre	pared: 08-Oct-14	Analyzed:	09-Oct-14		
alpha-BHC	20.5		μg/kg wet	4.95	24.8		83	40-140	0.01	30
alpha-BHC [2C]	19.4		μg/kg wet	4.95	24.8		78	40-140	0.8	30
beta-BHC	26.2		μg/kg wet	4.95	24.8		106	40-140	1	30
beta-BHC [2C]	26.2		μg/kg wet	4.95	24.8		106	40-140	0.7	30
delta-BHC	28.2		μg/kg wet	4.95	24.8		114	40-140	1	30
delta-BHC [2C]	27.3		μg/kg wet	4.95	24.8		110	40-140	0.5	30
gamma-BHC (Lindane)	20.9		μg/kg wet	2.97	24.8		84	40-140	0.7	30
gamma-BHC (Lindane) [2C]	20.1		μg/kg wet	2.97	24.8		81	40-140	0.8	30
Heptachlor	20.1		μg/kg wet	4.95	24.8		81	40-140	1	30
Heptachlor [2C]	19.4		μg/kg wet	4.95	24.8		79	40-140	1	30
Aldrin	19.8		μg/kg wet	4.95	24.8		80	40-140	0.7	30
Aldrin [2C]	19.3		μg/kg wet	4.95	24.8		78	40-140	1	30

					Spike	Source		%REC		RPI
analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1423741 - SW846 3545A										
LCS Dup (1423741-BSD1)					<u>Pre</u>	pared: 08-Oct-	-14 Analyzed:	09-Oct-14		
Heptachlor epoxide	19.9		μg/kg wet	4.95	24.8		80	40-140	3	30
Heptachlor epoxide [2C]	19.7		μg/kg wet	4.95	24.8		79	40-140	1	30
Endosulfan I	20.0		μg/kg wet	4.95	24.8		81	40-140	3	30
Endosulfan I [2C]	19.5		μg/kg wet	4.95	24.8		79	40-140	0.9	30
Dieldrin	19.5		μg/kg wet	4.95	24.8		79	40-140	3	30
Dieldrin [2C]	19.2		μg/kg wet	4.95	24.8		78	40-140	1	30
4,4'-DDE (p,p')	19.3		μg/kg wet	4.95	24.8		78	40-140	4	30
4,4'-DDE (p,p') [2C]	19.2		μg/kg wet	4.95	24.8		78	40-140	0.7	30
Endrin	18.6		μg/kg wet	7.92	24.8		75	40-140	5	30
Endrin [2C]	18.8		μg/kg wet	7.92	24.8		76	40-140	2	30
Endosulfan II	21.7		μg/kg wet	7.92	24.8		88	40-140	5	30
Endosulfan II [2C]	21.1		μg/kg wet	7.92	24.8		85	40-140	1	30
4,4'-DDD (p,p')	20.8		μg/kg wet	7.92	24.8		84	40-140	6	30
4,4'-DDD (p,p') [2C]	21.2		μg/kg wet	7.92	24.8		86	40-140	1	30
Endosulfan sulfate	24.4		μg/kg wet	7.92	24.8		99	40-140	6	30
Endosulfan sulfate [2C]	24.4		μg/kg wet	7.92	24.8		99	40-140	0.04	30
4,4'-DDT (p,p')	18.0		μg/kg wet	7.92	24.8		73	40-140	8	30
4,4'-DDT (p,p') [2C]	17.8		μg/kg wet	7.92	24.8		72	40-140	2	30
Methoxychlor	20.5		μg/kg wet	7.92	24.8		83	40-140	9	30
Methoxychlor [2C]	19.4		μg/kg wet	7.92	24.8		78	40-140	0.5	30
Endrin ketone	21.5		μg/kg wet	7.92	24.8		87	40-140	4	30
Endrin ketone [2C]	20.7		μg/kg wet	7.92	24.8		84	40-140	0.3	30
Endrin aldehyde	22.0		μg/kg wet	7.92	24.8		89	40-140	4	30
Endrin aldehyde [2C]	22.0		μg/kg wet	7.92	24.8		89	40-140	0.03	30
alpha-Chlordane	19.4		μg/kg wet	4.95	24.8		78	40-140	3	30
alpha-Chlordane [2C]	18.9		μg/kg wet	4.95	24.8		76	40-140	0.8	30
gamma-Chlordane	20.1		μg/kg wet	4.95	24.8		81	40-140	3	30
gamma-Chlordane [2C]	19.5		μg/kg wet	4.95	24.8		79	40-140	0.7	30
Alachlor	24.3		μg/kg wet	4.95	24.8		98	40-140	3	30
Alachlor [2C]	22.4		μg/kg wet	4.95	24.8		91	40-140	0.3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	8.38		μg/kg wet		9.90		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	8.03		μg/kg wet		9.90		81	30-150		
Surrogate: Decachlorobiphenyl (Sr)	8.22		μg/kg wet		9.90		83	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	7.52		μg/kg wet		9.90		76	30-150		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1423837 - SW846 3050B										
Blank (1423837-BLK1)					Pre	pared: 09-Oct-	14 Analyzed	: 15-Oct-14		
Thallium	< 2.90		mg/kg wet	2.90						
Beryllium	< 0.484		mg/kg wet	0.484						
Selenium	< 1.45		mg/kg wet	1.45						
Antimony	< 4.84		mg/kg wet	4.84						
Cadmium	< 0.484		mg/kg wet	0.484						
Copper	< 0.968		mg/kg wet	0.968						
Zinc	< 3.49		mg/kg wet	3.49						
Nickel	< 0.968		mg/kg wet	0.968						
Vanadium	< 1.45		mg/kg wet	1.45						
Arsenic	< 1.45		mg/kg wet	1.45						
Chromium	< 0.968		mg/kg wet	0.968						
Silver	< 1.45		mg/kg wet	1.45						
Lead	< 1.45		mg/kg wet	1.45						
Barium	< 0.968		mg/kg wet	0.968						
Reference (1423837-SRM1)					Pro	pared: 09-Oct-	.14 Analyzed	· 15-Oct-1/I		
Silver	19.1		ma/ka wot	1.50	20.7	pared. 03-Oct	92	74.87-125.3		
Silvei	19.1		mg/kg wet	1.50	20.7		92	74.07-125.5		
Beryllium	50.6		mg/kg wet	0.500	49.6		102	82.83-117.5 8		
Cadmium	47.0		mg/kg wet	0.500	49.5		95	81.66-117.7 1		
Copper	87.6		mg/kg wet	1.00	86.7		101	81.54-118.4 5		
Nickel	61.2		mg/kg wet	1.00	63.5		96	82.11-118.6 9		
Lead	66.0		mg/kg wet	1.50	68.6		96	81.95-118.7 9		
Antimony	20.8		mg/kg wet	5.00	45.8		45	25-209.45		
Selenium	87.4		mg/kg wet	1.50	91.3		96	77.4-122.59		
Thallium	79.6		mg/kg wet	3.00	71.2		112	78.26-121.7		
								3		
Vanadium	56.2		mg/kg wet	1.50	55.2		102	76.63-123.3 6		
Zinc	94.6		mg/kg wet	3.60	97.5		97	81.48-118.5 2		
Chromium	71.3		mg/kg wet	1.00	70.2		102	78.67-120.5 8		
Arsenic	71.8		mg/kg wet	1.50	71.7		100	78.41-121.5 8		
Barium	111		mg/kg wet	1.00	105		106	82.75-117.7 3		
Reference (1423837-SRM2)					Pre	pared: 09-Oct-	14 Analyzed	: 15-Oct-14		
Lead	63.0		mg/kg wet	1.50	67.1		94	81.95-118.7 9		
Zinc	95.1		mg/kg wet	3.60	95.4		100	81.48-118.5 2		
Vanadium	55.6		mg/kg wet	1.50	54.0		103	76.63-123.3 6		
Thallium	76.7		mg/kg wet	3.00	69.6		110	78.26-121.7 3		
Antimony	19.2		mg/kg wet	5.00	44.8		43	25-209.45		
Nickel	61.0		mg/kg wet	1.00	62.1		98	82.11-118.6 9		
Copper	85.2		mg/kg wet	1.00	84.8		101	81.54-118.4		

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423837 - SW846 3050B										
Reference (1423837-SRM2)					Pre	pared: 09-Oct	-14 Analyzed	d: 15-Oct-14		
Chromium	69.3		mg/kg wet	1.00	68.6		101	78.67-120.5 8		
Cadmium	46.7		mg/kg wet	0.500	48.4		96	81.66-117.7 1		
Beryllium	50.8		mg/kg wet	0.500	48.5		105	82.83-117.5 8		
Arsenic	69.2		mg/kg wet	1.50	70.1		99	78.41-121.5 8		
Silver	19.6		mg/kg wet	1.50	20.3		97	74.87-125.3 7		
Selenium	87.3		mg/kg wet	1.50	89.3		98	77.4-122.59		
Barium	109		mg/kg wet	1.00	102		107	82.75-117.7 3		
Batch 1423838 - EPA200/SW7000 Series										
Blank (1423838-BLK1)					Pre	pared: 09-Oct	-14 Analyzed	d: 15-Oct-14		
Mercury	< 0.0273		mg/kg wet	0.0273						
Reference (1423838-SRM1)					<u>Pre</u>	pared: 09-Oct	-14 Analyzed	d: 15-Oct-14		
Mercury	4.93	D	mg/kg wet	0.600	4.34		114	72.86-127.1 3		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423385 - General Preparation										
Duplicate (1423385-DUP1)			Source: SE	<u> 897409-04</u>	<u>Pre</u>	pared & Analy	zed: 03-Oct-14			
% Solids	17.1		%			17.3			1	5
Duplicate (1423385-DUP2)			Source: SE	<u> 897409-05</u>	Pre	pared & Analy	zed: 03-Oct-14			
% Solids	15.4		%			15.8			3	5

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 79383 - SW3545A										
LCS (LCS-79383)					Pre	pared: 07-Oct-	14 Analyzed:	: 08-Oct-14		
Naphthalene	106.6		ug/Kg	66	166.7		63.9	19-102		
2-Methylnaphthalene	130.8		ug/Kg	66	166.7		78.5	19-112		
Acenaphthylene	97.13		ug/Kg	66	166.7		58.3	23-134		
Acenaphthene	91.26		ug/Kg	66	166.7		54.8	33-113		
Fluorene	108.1		ug/Kg	66	166.7		64.9	32-122		
Phenanthrene	116.8		ug/Kg	66	166.7		70.1	38-108		
Anthracene	93.05		ug/Kg	66	166.7		55.8	35-114		
Fluoranthene	104.1		ug/Kg	66	166.7		62.5	41-117		
Pyrene	117.8		ug/Kg	66	166.7		70.7	39-119		
Benzo(a)anthracene	122.0		ug/Kg	66	166.7		73.2	39-111		
Chrysene	141.4		ug/Kg	66	166.7		84.8	36-112		
Benzo(b)fluoranthene	106.8		ug/Kg	66	166.7		64.1	39-128		
Benzo(k)fluoranthene	121.9		ug/Kg	66	166.7		73.1	30-133		
Benzo(a)pyrene	112.1		ug/Kg	66	166.7		67.3	43-119		
Indeno(1,2,3-cd)pyrene	139.9		ug/Kg	66	166.7		83.9	48-119		
Dibenzo(a,h)anthracene	92.27		ug/Kg	66	166.7		55.4	48-121		
Benzo(g,h,i)perylene	88.10		ug/Kg	66	166.7		52.9	45-116		
1-Methylnaphthalene	94.45		ug/Kg	66	166.7		56.7	50-150		
Surrogate: Nitrobenzene-d5	123.8		ug/Kg		166.7		74.3	45-135		
Surrogate: 2-Fluorobiphenyl	112.2		ug/Kg		166.7		67.3	45-135		
Surrogate: Terphenyl-d14	106.5		ug/Kg		166.7		63.9	45-135		
LCS Dup (LCSD-79383)					Pre	pared: 07-Oct-	14 Analyzed:	: 08-Oct-14		
Naphthalene	99.41		ug/Kg	66	166.7		59.6	19-102	6.94	40.0
2-Methylnaphthalene	105.5		ug/Kg	66	166.7		63.3	19-112	21.4	40.0
Acenaphthylene	88.76		ug/Kg	66	166.7		53.3	23-134	9.01	40.0
Acenaphthene	101.2		ug/Kg	66	166.7		60.7	33-113	10.4	40.0
Fluorene	120.9		ug/Kg	66	166.7		72.5	32-122	11.1	40.0
Phenanthrene	125.4		ug/Kg	66	166.7		75.3	38-108	7.09	40.0
Anthracene	79.16		ug/Kg	66	166.7		47.5	35-114	16.1	40.0
Fluoranthene	106.9		ug/Kg	66	166.7		64.2	41-117	2.67	40.0
Pyrene	90.51		ug/Kg	66	166.7		54.3	39-119	26.2	40.0
Benzo(a)anthracene	112.6		ug/Kg	66	166.7		67.5	39-111	8.00	40.0
Chrysene	113.3		ug/Kg	66	166.7		68.0	36-112	22.1	40.0
Benzo(b)fluoranthene	136.9		ug/Kg	66	166.7		82.2	39-128	24.7	40.0
Benzo(k)fluoranthene	101.3		ug/Kg	66	166.7		60.8	30-133	18.4	40.0
Benzo(a)pyrene	106.9		ug/Kg	66	166.7		64.1	43-119	4.78	40.0
Indeno(1,2,3-cd)pyrene	112.2		ug/Kg	66	166.7		67.3	48-119	22.0	40.0
Dibenzo(a,h)anthracene	89.77		ug/Kg	66	166.7		53.9	48-121	2.75	40.0
Benzo(g,h,i)perylene	87.17		ug/Kg	66	166.7		52.3	45-116	1.06	40.0
1-Methylnaphthalene	106.8		ug/Kg	66	166.7		64.1	50-150	12.3	40.0
Surrogate: Nitrobenzene-d5	82.14		ug/Kg		166.7		49.3	45-135		
Surrogate: 2-Fluorobiphenyl	126.3		ug/Kg		166.7		75.8	45-135		
Surrogate: Terphenyl-d14	109.2		ug/Kg		166.7		65.5	45-135		
Blank (MB-79383)					Pre	pared: 07-Oct-	14 Analyzed:	: 08-Oct-14		
Naphthalene	< 66	U	ug/Kg	66				-		
2-Methylnaphthalene	< 66	U	ug/Kg	66				-		
Acenaphthylene	< 66	U	ug/Kg	66				-		
Acenaphthene	< 66	U	ug/Kg	66				-		
Fluorene	< 66	U	ug/Kg	66				-		
Phenanthrene	< 66	U	ug/Kg	66				-		
Anthracene	< 66	U	ug/Kg	66				-		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 79383 - SW3545A										
Blank (MB-79383)					Pre	pared: 07-Oct	-14 Analyzed	: 08-Oct-14		
Fluoranthene	< 66	U	ug/Kg	66				-		
Pyrene	< 66	U	ug/Kg	66				-		
Benzo(a)anthracene	< 66	U	ug/Kg	66				-		
Chrysene	< 66	U	ug/Kg	66				-		
Benzo(b)fluoranthene	< 66	U	ug/Kg	66				-		
Benzo(k)fluoranthene	< 66	U	ug/Kg	66				-		
Benzo(a)pyrene	< 66	U	ug/Kg	66				-		
Indeno(1,2,3-cd)pyrene	< 66	U	ug/Kg	66				-		
Dibenzo(a,h)anthracene	< 66	U	ug/Kg	66				-		
Benzo(g,h,i)perylene	< 66	U	ug/Kg	66				-		
1-Methylnaphthalene	< 66	U	ug/Kg	66				-		
Surrogate: Nitrobenzene-d5	84.25		ug/Kg		166.7		50.6	45-135		
Surrogate: 2-Fluorobiphenyl	114.1		ug/Kg		166.7		68.5	45-135		
Surrogate: Terphenyl-d14	118.9		ug/Kg		166.7		71.4	45-135		

Semivolatile Organic Compounds by GC - Pesticide Breakdown Report

A 1770		0/ D 1.1	** **
Analyte(s)	Column	% Breakdown	Limit
Batch S411466			
Performance Mix (S411466-PEM1)			
4,4'-DDT (p,p')	1	3.9	15.0
Endrin	1	10.8	15.0
4,4'-DDT (p,p')	2	2.9	15.0
Endrin	2	8.6	15.0
Performance Mix (S411466-PEM2)			
4,4'-DDT (p,p')	1	3.5	15.0
Endrin	1	12.5	15.0
4,4'-DDT (p,p')	2	2.9	15.0
Endrin	2	9.0	15.0
Batch S411635			
Performance Mix (S411635-PEM1)			
4,4'-DDT (p,p')	1	3.3	15.0
Endrin	1	4.2	15.0
4,4'-DDT (p,p')	2	2.2	15.0
Endrin	2	3.4	15.0
Performance Mix (S411635-PEM2)			
4,4'-DDT (p,p')	1	7.3	15.0
Endrin	1	4.8	15.0
4,4'-DDT (p,p')	2	4.1	15.0
Endrin	2	1.9	15.0

Notes and Definitions

D Data reported from a dilution

DC9 Matrix interference affected the internal standard recovery on the primary column. The results from the confirmation

column were used.

J Reading was less than the PQL but greater than the MDL or Estimated concentration for Tentatively Identified Compound

R06 MRL raised to correlate to batch QC reporting limits.

S Spike recovery falls outside of the control limit

SGC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

U Compound not detected below method detection limit at or above the MRL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Nicole Leja Rebecca Merz

Telephone #:

860-283-5800

Rocky Hill, CT 06067 500 Enterprise Dr Report To: AECOM

Greenwic Green	Containers	ter
Greenwich High School Greenwich Greenwich State Kris Van Naerssen/Clare Murphy-Hagan QA/QC Reporting Note: *additional charges may app		
Greenwich High School Greenwich State Greenwich State Greenwich Automobile State Greenwich State		
Greenwich High School Greenwich State Kris Van Naerssen/Clare Murphy-Hagan	7=CH ₃ OH	6=Ascorbic Acid 7=C
Greenwich High School Greenwich State	RQN	P.O No.:
	Naerssen	Attn: Kris van Naerssen
Project No: 60225155		Invoice To: SAME
Samples disposed after 60 days unless otherwise instructed		3 · · · · · · · · · · · · · · · · · · ·
Min. 24-hr notification needed for rushes	of 1	Page1
Rush TAT - Date Needed: All TAT's subject to laboratory approval		
Special Handling: Standard TAT - 7 to 10 business days	IAIN OF CUSTODY RECORD	AIN OF CU

			The same				200	90/	05	20	03	02	123976	Lab ID	0	X1=	O= Oil SW= St	DW =Dinking Water		1 =Na ₂ S2O ₃ 2 8 = NaHSO ₄ 9 =	Project Mgr
			TO THE PERSON NAMED IN COLUMN TO THE	Relinquished by:	×		SED-DOWNSTREAM-0110-0214-FD	SED-DOWNSTREAM-06-10-0\-14	SED-DOWNSTREAM-05-10-01-14	SED-DOWNSTREAM-04-10-01-14	SED-DOWNSTREAM-03-10-01 -14	SED-DOWNSTREAM-02-10-0\ -14	SED-DOWNSTREAM-01-10-02-14	Sample ID	G = Grab	X2=	SW= surface Water SO=Soil SL= Sludge	GW = Groundwater		2 =HCl 3 =H ₂ SO ₄ 4 =HNO ₃ 9 = Deionized Water 10 =H ₃ PO ₄	Malcom Beeler
	8	7	ST.	70			10/02/2014	10/01/2014	10/0\/2014	10/0\/2014	10/6\/2014	10/01/2014	10/02/2014	Date	C=Compsite	X3=	udge A = Air	ww = Waste Water		5=NaOH 11=	1
		TONE !		Received by:			11:20	12:30	15:15	16:10	17:02	18:12	11:20	Time	е		7	ıter		6=Ascorbic Acid	-
			THE REAL PROPERTY.				ရ	G	G	ဂ	ရ	ဂ	ဂ	Ту	/pe					\cid 12=	P.O No.:
		102	10/2				so	so	so	so	so	so	so	Ма	ıtrix					7 =CH ₃ OH	
		14	114	Date		1									VOA					H	
-				7			2	N	2	N	22	20	12			er Glas		Containers			RQN
		825	14.00	Time		10			¥						Plasti)	liners			N
		0					×	×	×	×	×	×	×	Meta	ls (Me	ethod					
		5		Temp °C			×	×	×	×	×	×	×			series thod 8					
	Conc			L			×	×	×	×	×	×	×			(Meth	od			List Pro	-
Ambient 🗗 Iced 🗆 Refrigerated	Condition upon receipt:		✓ E-mail to:	✓ EDD format			×	×	×	×	×	×	×	РСВ		thods	3540	Analysis		List Preservative Code below:	Sampler(s):
ed N □ Re	1		Г	ormat:								2								e below:	_
frigerated	Custody Seals:		Kris.v																		(ris Van Na
□DI VOA Frozen □ Soil Jar Frozen	☐ Present ☐ Intact ☐ Broken		kris.vannaerssen@aecom.com	EQUIS							*	is Sec.	20	Other: State-specific reporting standards:	☐ Tier II* ☐ Tier IV*		No QC	MA DEP MCP CAM Report yes no	avainona via goo maj upppij	QA/QC Reporting Notes:	Kris Van Naerssen/Clare Murphy-Hagan

SPECTRUM ANALYTICAL, INC. HANIBAL TECHNOLOGY

Report To: AECOM

Invoice To: SAME

Rocky Hill, CT 06067 500 Enterprise Dr

CHAIN OF C

もずれての

								G	G	G	G	G	G	G	Туре		Acid 	P.O No		Attn: Krit	SAME	. 1	Page	9	
		0	10/			2		so	so	so	so	so	so	so	Matrix		7 =CH ₃ OH			Attn: Kris van Naerssen			<u>_</u>		<i>!</i>
		21	1,1/2,	Date											# of VOA Vials		위			erssen			으	<u> </u>	i
		4	1					2	2	2	2	2	2	2	# of Amber Glass	8		321					_	YU	j
		2	14:00	1											# of Clear Glass	Containers		RQN				Ŀ		조	ì
1		228	6	Time						V					# of Plastic	S								EC.	0
														1000	Metals (Method					R				2	
		0.0		Temp °C				×	×	×	× ×	×	×	×	6000/7000 series) **- PAHs (Method 8270	-				l ×				C	,
	Conv							×	×	×	×	×	×	×	Pesticides (Method 8081)	ł	List Pr					11 2 11		101	
Condition about receibe	tiion ur		<	<				×	×	×	×	×	×	×	PCBs (Methods 3540 and 8082)	An	List Preservative Code below:	Samp	Location:	Site Name	Project No:				
7011160	aces do		E-mail to:	EDD 1												Analysis	ive Coo	Sampler(s):	ion	lame:	ct No:				[] (
1		-	<u></u>	EDD format:													ie belov					Sample	All TAI	Rush	Standa
Cusiouy seals.	Custod			-	313												s.	Kris			E E	es dispo	rs subje 4-hr not	Rush TAT - Date Needed	ard TAT
oedis.	Spale.		Kris.v	200	10				H				2					Van Na	Greenwich	Gre		sed aft	ect to lal)ate Ne	- 7 to 1
	<u>ם</u>		annaers	- 1	20					C			5	*	CT DF	MA	.*	ierssen/	wich	enwich	602	er 60 da	boratory	eded:	0 busin
Fleselit	Deant		kris.vannaerssen@aecom.com	EQUIS	C		h		Mi.	TRC	H,	9		250	CT DPH RCP Report gyes Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full Tier II* Other: State-specific reporting standards:	ED MOD	QA/QC Reporting Notes: *additional charges may appply	Kris Van Naerssen/Clare Murphy-Hagan		Greenwich High School	60225155	ays unle	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes		Standard TAT - 7 to 10 business days
L IIIIaci			ecom.c	7	3	*			(N	3		a .	iel	2	Report ard ard	CAM Rer	Report al charge	lurphy-l		chool		ss othe	/al shes		ى ت
			mom ,	200	0	U	,	GP.	-	S		181	\ De-	Meta	yes yes yes yes yes No QC ASP B*		ting No	Hagan	State	=		wise ir			
DIOKEII	Rroken							310	6	218W			-LEV	als	yes		tes:		CT			Samples disposed after 60 days unless otherwise instructed		z.	
						~	9	ン	8 .	5	1		5		3 8	В		ı	1	1	t .	<u> </u>		P.	2
														ģ.											

0= 0il

SW= surface Water

SO=Soil

SL= Sludge A= Air

X2=

X3=

X1=

DW=Dinking Water

GW= Groundwater

ww= Waste Water

8= NaHSO₄ 9= Deionized Water 10=H₃PO₄

Project Mgr: Telephone #:

1=Na₂S2O₃

2=HCI

3=H2SO4 Malcom Beeler 860-283-5800

4=HNO₃

5=NaOH

6=Ascorbic Acid

1

22019

SED-DOWNSTREAM-03-10-01 -14

SED-DOWNSTREAM-02-10-01-14 SED-DOWNSTREAM-01-10-02-14

10/02/2014

11:20

Time

06

SED-DOWNSTREAM-0110-0214-FD 10/02/2014 11:20

SED-DOWNSTREAM-06-10-01-14 10/01/2014 12:30

SED-DOWNSTREAM-05-10-01-14 SED-DOWNSTREAM-04-10-01-14

10/0\/2014

6:10

10/61/2014 17:02 10/61/2014 18:12

10/61/2014 5:15

Relinquished by:

Received by:

Lab ID

Sample ID

G= Grab

C=Compsite Date

☐ Ambient ☐ Iced ☐ Refrigerated ☐ DI VOA Frozen ☐ Soil Jar Frozen

Appendix D

Summary of Chemicals of Potential Ecological Concern Selection

Table D-1 Summary of Surface Water Chemicals of Potential Ecological Concern

	0.00	01	0.1.1	500	Total Number	Number of	Detection	Minimum Detected Concentration	Average Concentration	Maximum Detected Concentration	Minimum Reporting Limit	Maximum Reporting Limit	SW SL Lower of Aquatic vs Amphilian	20772 2 4 4 4 4 4
Analyte	CAS Number	Class	Subclass	BCC	of Samples	Detections	Frequency (%)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	COPEC Determination
Mercury	7439-97-6	Inorganic		Х	5	0	0%	ND	ND ND	ND	<0.20	<0.20	0.77	ND COPEC: MRL exceeds SL
Antimony	7440-36-0 7440-38-2	Inorganic			5 5	0	0%	ND ND	ND ND	ND ND	<6.0 <4.0	<6.0 <4.0	30 150	Not a COPEC: MRL does not exceed SL Not a COPEC: MRL does not exceed SL
Arsenic Barium	7440-38-2	Inorganic			5	5	0% 100%	119	124	135	<4.0	<4.0	3.9	COPEC: Max sample value exceeds SL
		Inorganic			5	0			ND		0.0	0.0	0.66	'
Beryllium	7440-41-7 7440-43-9	Inorganic					0% 0%	ND ND	ND ND	ND ND	<2.0 <2.5	<2.0 <2.5	0.66	ND COPEC: MRL exceeds SL ND COPEC: MRL exceeds SL
Chromium		Inorganic			5 5	0		ND ND	ND ND	ND ND	<2.5 <5.0			
Chromium	7440-47-3	Inorganic				-	0% 60%	5.0			<5.0	<5.0	11 4.8	Not a COPEC: MRL does not exceed SL
Copper Lead	7440-50-8 7439-92-1	Inorganic			5 5	0		5.0 ND	6.07 ND	7.6 ND	<7.5	<7.5	1.2	COPEC: Max sample value exceeds SL ND COPEC: MRL exceeds SL
	7439-92-1	Inorganic					0%	ND ND			<7.5 <5.0	<7.5 <5.0		
Nickel	7440-02-0	Inorganic			5 5	0	0% 0%	ND ND	ND ND	ND	<5.0 <15.0	<5.0 <15.0	28.9	Not a COPEC: MRL does not exceed SL ND COPEC: MRL exceeds SL
Selenium		Inorganic				0			ND ND	ND			5	
Silver	7440-22-4	Inorganic			5	-	0%	ND		ND	<5.0	<5.0	0.36	ND COPEC: MRL exceeds SL
Thallium	7440-28-0	Inorganic			5	0	0%	ND	ND	ND	<5.0	<5.0	12	Not a COPEC: MRL does not exceed SL
Vanadium	7440-62-2	Inorganic			5	0	0%	ND ND	ND ND	ND ND	<5.0 <45.0	<5.0 <45.0	19	Not a COPEC: MRL does not exceed SL
Zinc	7440-66-6	Inorganic	lnoosti-i-i-	V	5	0	0%	ND ND		ND			65	Not a COPEC: MRL does not exceed SL
alpha-BHC	319-84-6	Pesticide	Insecticide	X	5	•	0%	ND ND	ND	ND	<0.002	<0.002	2.2	Not a COPEC: MRL does not exceed SL
beta-BHC	319-85-7	Pesticide	Insecticide	X	5	0	0%	ND ND	ND	ND	<0.002	<0.002	2.2	Not a COPEC: MRL does not exceed SL
delta-BHC	319-86-8	Pesticide	Insecticide	X	5	0	0%	ND	ND	ND	<0.002	<0.002	141	Not a COPEC: MRL does not exceed SL
gamma-BHC (Lindane)	58-89-9	Pesticide	Insecticide	Х	5	0	0%	ND ND	ND	ND ND	<0.002	<0.002	0.08	Not a COPEC: MRL does not exceed SL
Heptachlor	76-44-8	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.002	<0.002	0.0038	Not a COPEC: MRL does not exceed SL
Aldrin	309-00-2	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.002	<0.002	3.0	Not a COPEC: MRL does not exceed SL
Heptachlor epoxide	1024-57-3	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.002	<0.002	0.0038	Not a COPEC: MRL does not exceed SL
Endosulfan I	959-98-8	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.002	<0.002	0.056	Not a COPEC: MRL does not exceed SL
Dieldrin	60-57-1	Pesticide	Insecticide	X	5	0	0%	ND	ND	ND	<0.002	<0.002	0.056	Not a COPEC: MRL does not exceed SL
4,4'-DDE (p,p')	72-55-9	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.002	<0.002	105	Not a COPEC: MRL does not exceed SL
Endrin	72-20-8	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.004	<0.004	0.036	Not a COPEC: MRL does not exceed SL
Endosulfan II	33213-65-9	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.004	<0.004	0.056	Not a COPEC: MRL does not exceed SL
4,4'-DDD (p,p')	72-54-8	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.004	<0.004	0.011	Not a COPEC: MRL does not exceed SL
Endosulfan sulfate	1031-07-8	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.004	<0.004	2.22	Not a COPEC: MRL does not exceed SL
4,4'-DDT (p,p')	50-29-3	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.004	<0.004	0.0005	ND COPEC: MRL exceeds SL
Methoxychlor	72-43-5	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.004	<0.004	0.03	Not a COPEC: MRL does not exceed SL
Endrin ketone	53494-70-5	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.004	<0.004	NA	Not a COPEC: No detects present and SLNA
Endrin aldehyde	7421-93-4	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.004	<0.004	NA	Not a COPEC: No detects present and SLNA
alpha-Chlordane	5103-71-9	Pesticide	Insecticide	X	5	0	0%	ND	ND	ND	<0.002	<0.002	0.0022	Not a COPEC: MRL does not exceed SL
gamma-Chlordane	5566-34-7	Pesticide	Insecticide	X	5	0	0%	ND	ND	ND	<0.002	<0.002	NA	Not a COPEC: No detects present and SLNA
Toxaphene	8001-35-2	Pesticide	Insecticide	X	5	0	0%	ND	ND	ND	<0.053	<0.054	0.0002	ND COPEC: MRL exceeds SL
Chlordane	57-74-9	Pesticide	Insecticide	X	5	0	0%	ND	ND	ND	<0.007	<0.007	0.0043	ND COPEC: MRL exceeds SL
Alachlor	15972-60-8	PCB		Х	5	0	0%	ND	ND	ND	<0.002	<0.002	0.014	Not a COPEC: MRL does not exceed SL
Acenaphthene	83-32-9	PAH	LPAH	-	5	0	0%	ND ND	ND	ND ND	<0.050	<0.050	23	Not a COPEC: MRL does not exceed SL
Acenaphthylene	208-96-8	PAH	LPAH	-	5	0	0%	ND	ND	ND	<0.050	<0.050	NA 0.4	Not a COPEC: No detects present and SLNA
1-Methylnaphthalene	90-12-0	PAH	LPAH		5	0	0%	ND ND	ND	ND ND	<0.050	<0.050	2.1	Not a COPEC: MRL does not exceed SL
Anthracene	120-12-7	PAH	LPAH	L.,	5	0	0%	ND ND	ND	ND ND	<0.050	<0.050	0.73	Not a COPEC: MRL does not exceed SL
Benzo (a) anthracene	56-55-3	PAH	HPAH	X	5	0	0%	ND	ND	ND	<0.050	<0.050	0.027	ND COPEC: MRL exceeds SL
Benzo (a) pyrene	50-32-8	PAH	HPAH	X	5	0	0%	ND ND	ND	ND ND	<0.050	<0.050	0.014	ND COPEC: MRL exceeds SL
Benzo (b) fluoranthene	205-99-2	PAH	HPAH	X	5	0	0%	ND	ND	ND	<0.050	<0.050	9.1	Not a COPEC: MRL does not exceed SL
Benzo (g,h,i) perylene	191-24-2	PAH	HPAH	X	5	0	0%	ND	ND	ND	<0.050	<0.050	NA	Not a COPEC: No detects present and SLNA
Benzo (k) fluoranthene	207-08-9	PAH	HPAH	X	5	0	0%	ND	ND	ND	<0.050	<0.050	NA	Not a COPEC: No detects present and SLNA
Chrysene	218-01-9	PAH	HPAH	X	5	0	0%	ND	ND	ND	<0.050	<0.050	NA NA	Not a COPEC: No detects present and SLNA
Dibenzo (a,h) anthracene	53-70-3	PAH	HPAH	Х	5	0	0%	ND	ND	ND	<0.050	<0.050	NA 0.4	Not a COPEC: No detects present and SLNA
Fluoranthene	206-44-0	PAH	HPAH		5	0	0%	ND	ND	ND	<0.050	<0.050	8.1	Not a COPEC: MRL does not exceed SL
Fluorene	86-73-7	PAH	LPAH		5	0	0%	ND	ND	ND	<0.050	<0.050	3.9	Not a COPEC: MRL does not exceed SL
Indeno (1,2,3-cd) pyrene	193-39-5	PAH	HPAH	Х	5	0	0%	ND	ND	ND	< 0.050	<0.050	4.3	Not a COPEC: MRL does not exceed SL
2-Methylnaphthalene	91-57-6	PAH	LPAH		5	0	0%	ND	ND	ND	< 0.050	<0.050	4.7	Not a COPEC: MRL does not exceed SL
Naphthalene	91-20-3	PAH	LPAH		5	0	0%	ND	ND	ND	< 0.050	<0.050	24	Not a COPEC: MRL does not exceed SL
Phenanthrene	85-01-8	PAH	LPAH		5	0	0%	ND	ND	ND	<0.050	<0.050	6.3	Not a COPEC: MRL does not exceed SL
Pyrene	129-00-0	PAH	HPAH	X	5	0	0%	ND	ND	ND	< 0.050	<0.050	0.025	ND COPEC: MRL exceeds SL

Notes:
BCC = bioaccumulative compound
COPEC = chemical of potential ecological concern
MDC = maximum detected concentration

MDC = maximum detected concentration
ug/l = micrograms per liter
MRL = maximum reporting limit
NA = not available
ND COPEC = Non-detect chemical of potential concern
PAHs = polyaromatic hydrocarbons
PCBs = polychlorinated biphenyls
St. = cropping level

SL = screening level SLNA = screening level not available

					Total Number	Number of	Detection	Minimum Detected Concentration	Average Concentration	Maximum Detected Concentration	Minimum Reporting Limit	Maximum Reporting Limit	Sediment Threshold SL	
Analyte	CAS Number	Class	Subclass	BCC	of Samples	Detections	Frequency (%)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	COPEC Determination
Antimony	7440-36-0	Inorganic		ļ	5	0	0%	ND 0.5	ND	ND	<6.82	<71.9	0.16	ND COPEC: MRL exceeds SL
Arsenic	7440-38-2 7440-41-7	Inorganic	-	ļ	5 5	0	80%	6.5 ND	11 ND	14 ND	<6.82 <0.682	<71.9 <7.19	9.79 NA	COPEC: Max sample value exceeds SL Not a COPEC: No detects present and SLNA
Beryllium Cadmium	7440-41-7	Inorganic Inorganic	1	1	5	1	20%	2.8	2.8	2.8	<0.682	<7.19 <7.19	0.99	COPEC: No detects present and SENA COPEC: Max sample value exceeds SL
Chromium	7440-43-9	Inorganic			5	5	100%	38	72	96	<0.002	<7.15	43	COPEC: Max sample value exceeds SL
Copper	7440-50-8	Inorganic			5	5	100%	82	303	416			32	COPEC: Max sample value exceeds SL
Lead	7439-92-1	Inorganic			5	5	100%	148	224	305			36	COPEC: Max sample value exceeds SL
Nickel	7440-02-0	Inorganic			5	5	100%	21.9	45	57			22.7	COPEC: Max sample value exceeds SL
Selenium	7782-49-2	Inorganic			5	0	0%	ND	ND	ND	<2.05	<21.6	2.0	ND COPEC: MRL exceeds SL
Silver	7440-22-4	Inorganic			5	0	0%	ND	ND	ND	<2.06	<21.7	1.0	ND COPEC: MRL exceeds SL
Thallium	7440-28-0	Inorganic			5	0	0%	ND	ND	ND	<4.09	<43.2	NA	Not a COPEC: No detects present and SLNA
Vanadium	7440-62-2	Inorganic			5	5	100%	41	80	101			50	COPEC: Max sample value exceeds SL
Zinc	7440-66-6	Inorganic		ļ	5	5	100%	208	452	580			121	COPEC: Max sample value exceeds SL
Barium	7440-39-3	Inorganic		V	5	5	100%	229	618	823			0.70	COPEC: Max sample value exceeds SL
Mercury	7439-97-6	Inorganic	Incontinida	X	5 5	5	100%	0.16	0.46	0.58 ND	<0.00771	-0.0720	0.18	COPEC: Max sample value exceeds SL
alpha-BHC [2C] beta-BHC [2C]	319-84-6 319-85-7	Pesticide Pesticide	Insecticide Insecticide	X	5	0	0% 0%	ND ND	ND ND	ND ND	<0.00771	<0.0739 <0.0739	0.0060 0.0050	ND COPEC: MRL exceeds SL ND COPEC: MRL exceeds SL
delta-BHC [2C]	319-86-8	Pesticide	Insecticide	X	5	0	0%	ND ND	ND ND	ND ND	<0.00771	<0.0739	6.4	Not a COPEC: MRL value does not exceed SL
gamma-BHC (Lindane) [2C]	58-89-9	Pesticide	Insecticide	X	5	0	0%	ND ND	ND ND	ND ND	<0.00771	<0.0443	0.0024	ND COPEC: MRL exceeds SL
Heptachlor [2C]	76-44-8	Pesticide	Insecticide	† ^`	5	0	0%	ND	ND	ND	<0.00771	< 0.0739	0.068	ND COPEC: MRL exceeds SL
Aldrin [2C]	309-00-2	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.00771	<0.0739	0.0020	ND COPEC: MRL exceeds SL
Heptachlor epoxide [2C]	1024-57-3	Pesticide	Insecticide	1	5	0	0%	ND	ND	ND	<0.00771	<0.0739	0.0025	ND COPEC: MRL exceeds SL
Endosulfan I [2C]	959-98-8	Pesticide	Insecticide		5	0	0%	ND	ND	ND	< 0.00771	< 0.0739	0.0029	ND COPEC: MRL exceeds SL
Dieldrin [2C]	60-57-1	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	< 0.00771	< 0.0739	0.0019	ND COPEC: MRL exceeds SL
4,4'-DDE (p,p') [2C]	72-55-9	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.00771	< 0.0739	0.0032	ND COPEC: MRL exceeds SL
Endrin [2C]	72-20-8	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.0123	<0.118	0.0022	ND COPEC: MRL exceeds SL
Endosulfan II [2C]	33213-65-9	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.0123	<0.118	0.014	ND COPEC: MRL exceeds SL
4,4'-DDD (p,p') [2C]	72-54-8	Pesticide	Insecticide	X	5 5	0	0%	ND	ND ND	ND ND	<0.0123	<0.118	0.0049	ND COPEC: MRL exceeds SL
Endosulfan sulfate [2C] 4,4'-DDT (p,p') [2C]	1031-07-8 50-29-3	Pesticide Pesticide	Insecticide Insecticide	Х	5	0	0% 0%	ND ND	ND ND	ND ND	<0.0123 <0.0123	<0.118 <0.118	0.0054 0.0042	ND COPEC: MRL exceeds SL COPEC: Max sample value exceeds SL
Methoxychlor [2C]	72-43-5	Pesticide	Insecticide	^	5	0	0%	ND ND	ND ND	ND ND	<0.0123	<0.118	0.0042	ND COPEC: MRL exceeds SL
Endrin ketone [2C]	53494-70-5	Pesticide	Insecticide	1	5	0	0%	ND ND	ND ND	ND ND	<0.0123	<0.118	NA	Not a COPEC: No detects present and SLNA
Endrin aldehyde [2C]	7421-93-4	Pesticide	Insecticide		5	0	0%	ND	ND	ND	<0.0123	<0.118	NA	Not a COPEC: No detects present and SLNA
alpha-Chlordane [2C]	5103-71-9	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.00771	<0.0739	NA	Not a COPEC: No detects present and SLNA
gamma-Chlordane [2C]	5566-34-7	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	< 0.00771	< 0.0739	NA	Not a COPEC: No detects present and SLNA
Toxaphene [2C]	8001-35-2	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.154	<1.480	0.028	ND COPEC: MRL exceeds SL
Chlordane [2C]	57-74-9	Pesticide	Insecticide	Х	5	0	0%	ND	ND	ND	<0.0308	<0.296	0.0032	ND COPEC: MRL exceeds SL
Alachlor [2C]	15972-60-8	PCB			5	0	0%	ND	ND	ND	<0.00771	< 0.0739	NA	Not a COPEC: No detects present and SLNA
Aroclor-1016	12674-11-2	PCB		X	5	0	0%	ND	ND	ND	<0.0308	<0.294	NA	Not a COPEC: No detects present and SLNA
Aroclor-1221	11104-28-2	PCB		X	5	0	0%	ND	ND	ND	<0.0308	<0.294	NA NA	Not a COPEC: No detects present and SLNA
Aroclor-1232 Aroclor-1242	11141-16-5 53469-21-9	PCB PCB	-	X	5 5	0	0% 0%	ND ND	ND ND	ND ND	<0.0308 <0.0308	<0.294 <0.294	NA NA	Not a COPEC: No detects present and SLNA Not a COPEC: No detects present and SLNA
Aroclor-1242 Aroclor-1248	12672-29-6	PCB		X	5	0	0%	ND ND	ND ND	ND ND	<0.0308	<0.294	NA NA	Not a COPEC: No detects present and SLNA Not a COPEC: No detects present and SLNA
Aroclor-1248 Aroclor-1254	11097-69-1	PCB	1	X	5	0	0%	ND ND	ND ND	ND ND	<0.0308	<0.294	0.06	ND COPEC: MRL exceeds SL
Aroclor-1260	11096-82-5	PCB		X	5	0	0%	ND	ND ND	ND ND	<0.0308	<0.294	NA	Not a COPEC: No detects present and SLNA
Aroclor-1262	37324-23-5	PCB		X	5	0	0%	ND	ND	ND	<0.0308	<0.294	NA	Not a COPEC: No detects present and SLNA
Aroclor-1268	11100-14-4	PCB	1	X	5	0	0%	ND	ND	ND	<0.0308	<0.294	NA	Not a COPEC: No detects present and SLNA
Naphthalene	91-20-3	PAH	LPAH		5	0	0%	ND	ND	ND	< 0.090	<1.000	0.18	ND COPEC: MRL exceeds SL
2-Methylnaphthalene	91-57-6	PAH	LPAH		5	0	0%	ND	ND	ND	< 0.090	<1.000	0.20	ND COPEC: MRL exceeds SL
Acenaphthylene	208-96-8	PAH	LPAH		5	0	0%	ND	ND	ND	<0.090	<1.000	0.0059	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Acenaphthene	83-32-9	PAH	LPAH	<u> </u>	5	0	0%	ND	ND	ND	<0.090	<1.000	0.0067	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Fluorene	86-73-7	PAH	LPAH	 	5	1	20%	0.61	0.61	0.61	<0.090	<1.000	0.077	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Phenanthrene	85-01-8	PAH	LPAH	<u> </u>	5	5	100%	0.67	3	9.5	0.000	4.000	0.204	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Anthracene Fluoranthene	120-12-7 206-44-0	PAH PAH	LPAH HPAH	 	5 5	<u>3</u> 5	100%	0.31 2.2	1 8	1.4 24	<0.090	<1.000	0.057 0.42	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Pyrene	129-00-0	PAH	HPAH HPAH	Х	5	5 5	100%	1.8	8	19	+		0.42	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Benzo(a)anthracene	56-55-3	PAH	HPAH	X	5	5	100%	0.81	3	9.6			0.20	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Chrysene	218-01-9	PAH	HPAH	X	5	5	100%	0.81	3.3	9.3			0.17	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Benzo(b)fluoranthene	205-99-2	PAH	HPAH	X	5	5	100%	1.2	4.4	13			10.4	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Benzo(k)fluoranthene	207-08-9	PAH	HPAH	X	5	4	80%	0.57	2.4	6.5	<90	<1000	0.027	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Benzo(a)pyrene	50-32-8	PAH	HPAH	X	5	4	80%	0.81	3.3	9.1	<90	<1000	0.15	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Indeno(1,2,3-cd)pyrene	193-39-5	PAH	HPAH	Х	5	4	80%	0.74	2.9	7.9	<90	<1000	0.017	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Dibenzo(a,h)anthracene	53-70-3	PAH	HPAH	Х	5	0	0%	ND	ND	ND	<90	<1000	0.033	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
Benzo(g,h,i)perylene	191-24-2	PAH	HPAH	Х	5	4	80%	0.61	2.3	6.0	<90	<1000	0.17	COPEC: Max sample value exceeds SL. Evaluated on a total PAH basis
1-Methylnaphthalene	90-12-0	PAH	LPAH		5	0	0%	ND	ND	ND	<90	<1000	NA	Not a COPEC: No detects present and SLNA
Total Low Molecular Weight PAHs		PAH	HPAH	Х	5	5	100%	0.31	1.49	11.5	ļ		0.08	COPEC: Max sample value exceeds SL
Total High Molecular Weight PAHs			LPAH	 	5	5	100%	0.57	3.9	104			0.193	COPEC: Max sample value exceeds SL
Total PAHs	RACALC-PAH	PAH			5	5	100%	0.31	3.29	116	1		1.6	COPEC: Max sample value exceeds SL

BCC = bioaccumulative compound
COPEC = chemical of potential ecological concern
MDC = maximum detected concentration
mg/kg = milligrams per kilogram
MRL = maximum reporting limit

NA = not available

ND COPEC = Non-detect chemical of potential concern
PAHs = polyaromatic hydrocarbons
PCBs = polychlorinated biphenyls

SL = screening level

SLNA = screening level not available

PCBs - individual PCBs (as Aroclor or as homologues) are presented for reference only. PCBs are evaluated for sediment invertebrates and wildlife on a total PCB basis.

PAHs - indivual PAHs are presented for reference only. PAHs are evaluated on a total basis.

DDx - individual 4,4'-substituted DDT isomers (4,4'DDD and 4'4-DDE) are presented for reference only. DDT isomers are evaluated for sediment invertebrates and wildlife on a total DDx basis.

Endosulfans - individual endosulfan isomers (4endosulfan I, endosulfan I, endosulfan I and endosulfan sulfate) are presented for reference only. Endosulfan is evaluated for sediment invertebrates and wildlife on a total endosulfan basis.

AECOM Environment

Appendix E

Evaluation of Aquaticfeeding Birds and Mammals

APPENDIX E FOOD WEB EVALUATION FOR AQUATIC-FEEDING BIRDS AND MAMMALS TABLE OF CONTENTS ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

TABLE 1	EXPOSURE PARAMETERS FOR ECOLOGICAL RECEPTORS - DOWNSTREAM
TABLE 2	MEDIA AND TISSUE CONCENTRATIONS - DOWNSTREAM
TABLE 3	ECOLOGICAL TOXICITY REFERENCE VALUES FOR THE AVIAN RECEPTORS
TABLE 4	ECOLOGICAL TOXICITY REFERENCE VALUES FOR THE MAMMALIAN RECEPTORS
TABLE 5	POTENTIAL RISKS TO THE GREAT BLUE HERON - STEP 2
TABLE 6	POTENTIAL RISKS TO THE GREAT BLUE HERON - STEP 3A
TABLE 7	POTENTIAL RISKS TO THE MALLARD - STEP 2
TABLE 8	POTENTIAL RISKS TO THE MALLARD - STEP 3A
TABLE 9	POTENTIAL RISKS TO THE MINK - STEP 2
TABLE 10	POTENTIAL RISKS TO THE MINK - STEP 3A
TABLE 11	POTENTIAL RISKS TO THE RACCOON - STEP 2
TABLE 12	POTENTIAL RISKS TO THE RACCOON - STEP 3A
TABLE 13	POTENTIAL RISKS TO THE MUSKRAT - STEP 2
TABLE 14	POTENTIAL RISKS TO THE MUSKRAT - STEP 3A
TABLE 15	SUMMARY OF POTENTIAL RISKS TO WILDLIFE DOWNSTREAM AREA

APPENDIX E TABLE 1
EXPOSURE PARAMETERS FOR ECOLOGICAL RECEPTORS - DOWNSTREAM
ECOLOGICAL RISK ASSESSMENT
ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT
GREENWICH, CT

			ı	Dietary Assu (%; kg _{dw}				Incidental					
Receptor Species	Average Body Weight (kg)	Food Ingestion Rate (kg _{dw} /day)	Plants	Fish		Benthio Invertebra		Soil/Sediment Ingestion (%; kg _{dw} /day)	Wate Ingestion (L/day	Rate	Home/ feed	_	Area Use Factor - Step 3A Evaluation
Birds			<u> </u>										
Mallard (Anas platyrhynchos)	1.043 [a]	0.0523 [b]	25% [c] 0.01323	-		75% 0.0391	[d]	2.0% [d] 0.00105	0.0607	[e]	307 - 719	[f]	0.007
Great Blue Heron (Ardea herodias)	2.229 [a]	0.0970 [b]		98% 0.09506	[c]	2% 0.00194	[d]	5% [e] 0.00485	0.10	[f]	0.6 - 8.4	[g]	0.80
Mammals						•							
Muskrat Ondatra zibethicus	0.837 [a]	0.0598 [b]	100% [c] 0.05976	-		-		0.009% [d] 0.0000054	0.08435	[e]	0.17	[f]	1
Mink Neovison vison	0.568 [a]	0.0307 [b]	2% [c] 0.0006	85% 0.0261	[c]	13% 0.00399	[d]	9.4% [e] 0.00289	0.0595	[f]	7.8 - 20.4	[g]	0.26
Raccoon (Procyon lotor)	5.740 [a]	0.153 [b]	39% [c] 0.0598	3% 0.0046	[d]	58% 0.0886	[d]	9.4% [e] 0.014	0.477	[f]	5.3 - 376	[g]	0.019

General Notes:

See individual organism notes for source, units, and conversion.

All receptors assumed to be present and actively foraging year-round for the Step 2 evaluation (area use factor and exposure duration set at 100%).

Area Use Factor for Step 3A is determined by dividing the mean home/foraging range by the approximate combined area of Upper, Middle, and Lower Milbrook Ponds (3.6 ha).

BW - Body Weight.

DW - Dry Weight.

FIR - Food Ingestion Rate.

Kg - Kilogram.

L/day - Liters per Day.

Notes for Mallard

- [a] Mean adult female body weight (male, 1.225 kg) per Nelson and Martin (1953) as cited in US EPA (1993).
- [b] Estimated using allometric equation per Nagy (2001) based on the adult male body weight of per Nelson and Martin (1953) as cited in US EPA (1993). Value expressed on a dry weight basis.
- [c] Plant ingestion derived from breeding adult female data per Swanson (1985). Value is the mean of spring-time values (April, May, and June). (USEPA, 1993).
- [d] Invertebrate ingestion derived from breeding adult female data per Swanson (1985). Value is the mean of spring-time values (April, May, and June). (USEPA, 1993)
- [d] Calculated based on soil fraction in diet (2.0% of whole diet, per EPA 1993) and food ingestion (Kg/dayay)
- [e] Allometric equation (as cited in EPA 1993) for the estimation of water intake for all birds is WI=0.059*BW(g)0.67, where WI = water ingestion (I/day).
- [f] Range for adult, non-breeding females (USEPA, 1993).

Notes for Great Blue Heron

- [a] Mean female/male body weight per Quinney (1982). (USEPA, 1993)
- [b] Calculated based on food ingestion rate and the mean of adult female/male body weight presented by Quinney (1982).
- [c] Fish ingestion is primarily composed of open-water fish per Alexander (1977). (USEPA, 1993).
- [d] Invertebrate ingestion is primarily composed of crustaceans and amphibians per Alexander (1977). (USEPA, 1993).
- [e] Calculated based on soil ingestion (Kg/day) and proportion of diet: FI (0.097 kg dw/d x Ps (0.05. Incidental soil ingestion is derived from the Eco-SSL wildlife exposure model, assuming 100% small mammal diet for the red-tailed hawk.
- [f] Allometric equation (as cited in EPA, 1993) for the estimation of water intake for all birds is WI=0.059*BW 0.67 (kg), where WI = water ingestion (L/day).
- [g] Range is the mean foraging ranges for adult birds in freshwater marsh and estuary habitats (USEPA, 1993).

APPENDIX E TABLE 1
EXPOSURE PARAMETERS FOR ECOLOGICAL RECEPTORS - DOWNSTREAM
ECOLOGICAL RISK ASSESSMENT
ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT
GREENWICH, CT

Notes for Muskrat

- [a] Adult (springtime) mean female body weight (male, 0.909 kg) per Reeves and Williams (1956).(USEPA, 1993).
- (b) Calculated based on an exclusive diet of greens (Svihla and Svihla.1931) and the body weight of Reeves and Williams (1956).
- [c] Muskrat are exclusive (obligate) herbivores (Willner et al., 1975), feeding on aquatic vegetation.
- [d] Calculated based on food intake and incidental soil ingestion: SI = FI x Ps
- [e] Allometric equation (as cited in EPA 1993) for estimation of water consumption for all mammals is: WI = 0.099 BW0.99 (kg), where WI = water ingestion (L/day).
- [f] Mean home range of juvenile and adult animals in marsh habitat (USEPA, 1993).

Notes for Mini

- [a] Adult mean female body weight of fall and summer values (male, 1.137 kg) per Mitchell (1961) (USEPA, 1993).
- [b] Calculated based on food ingestion rate and the mean of adult female body weight presented by Mitchell (1961).
- [c] Value based on percent of stomach contents (wet weight) per Alexander (1977) (USEPA, 1993).
- [d] Value based on percent of stomach contents (wet weight) per Alexander (1977) and consists largely of crustaceans. The dietary proportion derived from mammals, birds and amphibians is accounted for by invertebrates. (USEPA, 1993).
- [e] Percent soil/sediment in diet estimated from acid-soluble ash of scat of surrogate species used (raccoon) per Beyer et al. (1994). (USEPA, 1993)
- [f] Calculated based on water ingestion rate and the mean of adult female body weight per Micthell (1961).
- [g] Range for adult females in riparian habitats (USEPA, 1993).

Notes for Raccoon

- [a] Mean adult female body weight (male, 6.76 kg) per Nagel (1943). (USEPA, 1993).
- [b] Allometric equation (as cited in Nagy 2001) for estimation of food ingestion for all mammals is: FI = 0.0687 BW0.727 (kg), where FI = food ingestion (kg/day). Food ingestion rate (FIR) = FI/BW (kg/kg-BW/day).
- [c] Value estimated based on the mean year-round ingestion given as percent found in digestive tract, wet volume (Llewellyn and Uhler, 1952).
- [d] Value based on the mean year-round ingestion given as percent found indigestive tract, wet volume (Llewellyn and Uhler 1952). The dietary proportion derived from mammals and amphibians is accounted for as invertebrates.(USEPA, 1993).
- [e] Percent soil/sediment in diet estimated from acid-soluble ash of scat per Beyer et al. (1994). (USEPA, 1993).
- [f] Water ingestion rate calculated using algorithm for all mammals developed by Calder and Braun, 1983 [WIR (kg/day) = 0.099*BW 0.90] using average body weight.
- [g] Range for adult females in riparian habitat (USEPA, 1993).

APPENDIX E TABLE 2
MEDIA AND TISSUE CONCENTRATIONS - DOWNSTREAM ECOLOGICAL RISK ASSESSMENT
GREENWICH HIGHSCHOOL
GREENWICH, CT

	Measured Media C	oncentrations [a]	Estima	ted Benthic Invertebrate Tissue			Estimated F	ish Tissue C	oncentr	ations		Estimate	ed Plant Tissue	
	Maximum Sediment	Maximum Surface			Maximum Benthic			Maximum			Maximum			Maximum
	EPC	Water EPC [Total]			Invertebrate			Fish Tissue	Sedin	ment-to-Fish Uptake	Fish Tissue			Plant
COPC	(mg/kg _{dw})	(mg/L)	Sediment-to-Invert	ebrate Uptake Factor [b]	(mg/kg _{dw})	Wate	er-to-Fish Uptake Factor [c]	(mg/kg _{dw})		Factor	(mg/kg _{dw})	Soil-to-Plant Upta	ke Factor [b]	(mg/kg _{dw})
Inorganics							· · · · · · · · · · · · · · · · · · ·							
ARSENIC	14	ND	0.69	Bechtel-Jacobs (1998b)	9.8	17	OEHHA (2012)	NC	NA	[d]	NC	0.038	Bechtel-Jacobs (1998a)	0.54
BARIUM	823	0.14	0.160	Bechtel-Jacobs (1998b)	132	5.2	WDOE (1996)	2.81	NA	[d]	NC	0.156	Bechtel-Jacobs (1998a)	128.4
CADMIUM	2.8	ND	7.99	Bechtel-Jacobs (1998b)	22.6	40	OEHHA (2012)	NC	NA	[d]	NC	In(Cp)=0.546*Ln(Cs)-0.475	Bechtel-Jacobs (1998a)	1.10
CHROMIUM, TOTAL	95.5	ND	0.47	Bechtel-Jacobs (1998b)	44.9	21	OEHHA (2012)	NC	NA	[d]	NC	0.041	Bechtel-Jacobs (1998a)	3.92
COPPER	416	0.0076	5.25	Bechtel-Jacobs (1998b)	2184	36	NRWQC (HH), EPA (2002)	1.09	NA	[d]	NC	In(Cp)=0.394*Ln(Cs)+0.668	Bechtel-Jacobs (1998a)	21.0
LEAD	305	ND	0.610	Bechtel-Jacobs (1998b)	186	12	OEHHA (2012)	NC	NA	[d]	NC	In(Cp)=0.561*Ln(Cs)-1.328	Bechtel-Jacobs (1998a)	6.6
MERCURY	0.58	ND	2.9	Bechtel-Jacobs (1998b)	1.66	84	OEHHA (2012)	NC	NA	[d]	NC	In(Cp)=0.544*Ln(Cs)-0.996	Bechtel-Jacobs (1998a)	0.3
NICKEL	57	ND	2.32	Bechtel-Jacobs (1998b)	133	21	OEHHA (2012)	NC	NA	[d]	NC	In(Cp)=0.784*Ln(Cs)-2.223	Bechtel-Jacobs (1998a)	2.23
VANADIUM	101	ND	0.088	Bechtel-Jacobs (1998b) [e]	8.9	1	Default	NC	NA	[d]	NC	0.00485	Bechtel-Jacobs (1998a)	0.490
ZINC	580	ND	7.5	Bechtel-Jacobs (1998b)	4367	47	NRWQC (HH), USEPA (2002)	NC	NA	[d]	NC	In(Cp)=0.554*Ln(Cs)+1.575	Bechtel-Jacobs (1998a)	164.0
Organics														
										Mean of hPAH				
				Anthracene used as			Maximum of IPAH BAFs per			BSAFs per USEPA			Anthracene used as	
TOTAL LMW PAHs	12	ND	0.18	surrogate (USEPA, 2005)	2	691	BCFwin, USEPA (2011)	NC	2.8	(2012) [f]	161.0	In(Cp)=0.7784*Ln(Cs)-0.9887	surrogate, EPA (2005)	2.5
										Mean of hPAH				
				Benzo(a)pyrene used as			Maximum of hPAH BAFs per			BSAFs per USEPA			BaP used as surrogate,	
TOTAL HMW PAHs	104	ND	0.18	surrogate, USEPA (2005)	18.8	3268	BCFwin, USEPA (2011)	NC	0.26	(2012) [f]	135.7	In(Cp)=0.975*Ln(Cs)-2.0615	EPA (2005)	11.8
										Mean of hPAH				
							Maximum of PAH BAFs per			BSAFs per USEPA				
TOTAL PAHs	116	ND	0.18	USEPA (2005)	21	1860	BCFwin, USEPA (2011)	NC	1.48	(2012) [f]	856.8	In(Cp)=0.7912*Ln(Cs)-1.1442	EPA (2005)	13.69

Notes:

Maximum EPCs for screening level evaluation represent maximum detected concentrations.

Notes continued on following page.

COPC - Chemical of Potential Concern.

dw - Dry Weight.

EPC - Exposure Point Concentration. HMW - High Molecular Weight.

LMW - Low Molecular Weight.

PAHs - Polycyclic Aromatic Hydrocarbons.

USEPA - United States Environmental Protection Agency.

[a] Media summary statistics presented in Table 1 of the 2017 SLERA Addendum.

- [b] The 90th percentile values, where available, are used for screening level evaluations. Where they are not available the median value is used.
- [c] The fish BSAF value is modified to be presented in dry weight units assuming 75 percent moisture (i.e., modified BSAF / 0.25).
- [d] Use of BSAFs for inorganics is not appropriate; therefore, inorganics were not evaluated (ODEQ 2007; USCOE 2009)
- [e] Soil invertebrate value used as surrogate.
- [f] The invertebrate BSAF is modified from the reported value that is given in organic carbon-lipid normalized units (kg-sediment-oc / kg-lipid-invertebrate). The value is further modified to be presented in dry weight units assuming 80 percent moisture (i.e., modified BSAF / 0.2).

References:

Bechtel-Jacobs Company LLC. 1998a. Empirical Models for the Uptake of Inorganic Chemicals by Plants. Bechtel-Jacobs Company LLC, Oak Ridge, Tennessee. BJC/OR-133. Bechtel-Jacobs Company LLC.

Bechtel-Jacobs Company LLC. 1998b. Biota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel-Jacobs Company LLC, Oak Ridge, Tennessee. BJC/OR-112 Travis, C.C. and Arms, A.D., 1988. "Bioconcentration of Organics in Beef, Milk and Vegetation," Environmental Science and Technology, 22:271-274.

EPA. 2002. National Recommended Water Quality Criteria: 2002 Human Health Criteria Calculation Matrix. United States Environmental Protection Agency, Office of Water (4304T), EPA-822-R-02-012, November 2002.

EPA. 2004. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, National Sediment Quality Survey: Second Edition. Office of Science and Technology, Washington, D.C. EPA-823-R-04-007. November. Table C-1.

EPA 2005. Ecological Soil Screening Level Guidance. Washington D.C.: Office of Emergency and Remedial Response. November 2003, Revised February 2005.

EPA. 2011. Estimations Programs Interface for Windows (EPI Suite) v. 4.1. BCFBAF Interface. Developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC). January 2011. Available online at: http://www.epa.gov/opot/exposure/pubs/episuitedl.htm

EPA. 2012. Biota-Sediment Accumulation Factor Data Set (BSAF). Office of Research and Development with OSWER support. Available online at: http://www.epa.gov/med/prods_pubs.htm. Accessed September 7, 2012. WDOE. 1996. Washington State Department of Ecology, Toxics Cleanup Program.

OEHHA. 2012. Technical Support Document for Exposure Assessment and Stochastic Analysis, FINAL. California Office of Environmental Health Assessment. August, 2012. Available at: oehha.ca.gov/air/hot_spots/pdf/apenh.pdf
ODEQ. 2007. Guidance for Assessing Bioaccumulative Chemicals of Concern in Sediment, April 17 and April 19, 2007 Public Workshop. Oregon Department of Environmental Quality.

Available online at: http://www.deq.state.or.us/lq/pubs/Bioaccumtraining07041

USCOE. 2009. BSAF Database. U.S. Army Corps of Engineers. Technical Point of Contact, Mr. Charlie Lutz. Accessed online January 21, 2009 at: http://el.erdc.usace.army.mil/bsaf/bsaf.html

APPENDIX E TABLE 3
ECOLOGICAL TOXICITY REFERENCE VALUES FOR THE AVIAN RECEPTORS
ECOLOGICAL RISK ASSESSMENT
GREENWICH HIGHSCHOOL
GREENWICH, CT

COPEC	CAS	Endpoint Basis	Secondary Endpoint Basis	Test Species	Toxicity Endpoint	Dose ^[1] (mg/kg- BW/d)	Secondary Dose ^[1] (mg/kg-BW/d)	UF	[2]	TRV _{NOAEL} ^[2] (mg/kg-BW/d)	TRV _{LOAEL} ^[3] (mg/kg-BW/d)	Comments and Source ^[5]
Polycyclic Aromatic Hydrocarbons												
Total High Molecular Weight PAHs	RACALC-HPAH	C LOAEL	NA	mallard	Hepatic effects	136.3	NA	5		27.3	136.3	Total PAHs used as surrogate
Total Low Molecular Weight PAHs	RACALC-LPAH	C LOAEL	NA	mallard	Hepatic effects	136.3	NA	5		27.3	136.3	Total PAHs used as surrogate
PAH (total)	RACALC-HPAH	C LOAEL	NA	mallard	Hepatic effects	136.3	NA	5		27.3	136.3	Patton and Dieter (1980)
Metals												
Arsenic	7440-38-2	C NOAEL	C LOAEL	[4]	Reproduction and Growth	2.2	4.5	1	1	2.2	4.5	EPA (2005b)
Barium	7440-39-3	SC NOAEL	SC LOAEL	chicks	Mortality	208.3	416.5	5	2	41.7	208.3	Sample et al. (1996)
Cadmium	7440-43-9	C NOAEL	C LOAEL	[4]	Reproduction and Growth	1.5	6.3	1	1	1.5	6.3	EPA (2005c)
Chromium	7440-47-3	C NOAEL	C LOAEL	[4]	Reproduction and Growth	2.7	8.9	1	1	2.7	8.9	EPA (2005d) [6]
Copper	7440-50-8	C NOAEL	C LOAEL	[4]	Reproduction and Growth	4.1	12.1	1	1	4.1	12.1	EPA (2006)
Lead	7439-92-1	C NOAEL	C LOAEL	[4]	Reproduction and Growth	1.6	3.3	1		1.6	3.3	EPA (2005e)
Nickel	7440-02-0	C NOAEL	C LOAEL	[4]	Reproduction and Growth	6.7	21.4	1	1	6.7	21.4	EPA (2007a)
Vanadium	7440-62-2	C NOAEL	C LOAEL	[4]	Reproduction and Growth	0.34	0.7	1		0.34	0.7	EPA (2005h)
Zinc	7440-66-6	C NOAEL	C LOAEL	[4]	Reproduction and Growth	66.1	188.6	1		66.1	188.6	EPA (2007b)
Mercury	7439-97-6	C NOAEL	C LOAEL	Japanes e quail	Reproduction	0.45	0.9	1	1	0.45	0.9	Sample et al. (1996)

Notes:

LOAEL - Lowest Observed Adverse Effects Level

NA - Not Applicable or No Data Available

C NOAEL - No Observed Adverse Effects Level based on chronic duration exposure

SC NOAEL - No Observed Adverse Effects Level based on intermediate (sub chronic) duration exposure

TRV - toxicity reference value

Note that the NOEL endpoint is assumed equivalent to the NOAEL, where indicated.

References:

Patton, J.F., and Dieter, M.P. 1980. "Effects of Petroleum Hydrocarbons on Hepatic Function in the Duck." Comparative Biochemistry and Physiology C, vol. 65C(1): 33-36. 1980.

Sample, B.E., D.M. Opresko and G.W. Suter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision . ES/ER/TM-86/R3. Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory.

EPA. 1997. EPA Region 10 Supplemental Ecological Risk Assessment Guidance for Superfund. June 1997

EPA. 2005a. Guidance for Developing Ecological Soil Screening Levels. Office of Emergency and Remedial Response. Washington D.C.November 2003, Revised February 2005.

EPA. 2005b. Ecological Soil Screening Levels for Arsenic. Interim Final. Office of Emergency and Remedial Response. Washington DC. March

EPA. 2005c. Ecological Soil Screening Levels for Cadmium. Interim Final. Office of Emergency and Remedial Response. Washington DC. March

EPA. 2005d. Ecological Soil Screening Levels for Chromium. Interim Final. Office of Emergency and Remedial Response. Washington DC. March

EPA. 2005e. Ecological Soil Screening Levels for Lead. Interim Final. Office of Emergency and Remedial Response. Washington DC. March

EPA. 2005h. Ecological Soil Screening Levels for Vanadium. Interim Final. Office of Emergency and Remedial Response. Washington DC. March

EPA. 2006. Ecological Soil Screening Levels for Copper Interim Final. Office of Emergency and Remedial Response. Washington DC. July

EPA. 2007a. Ecological Soil Screening Levels for Nickel Interim Final, OSWER Directive 9285.7-76. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. March 2007

EPA. 2007b. Ecological Soil Screening Levels for Zinc Interim Final, OSWER Directive 9285.7-73. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. June 2007

EPA. 2007c. Ecological Soil Screening Levels for DDT and Metabolites Interim Final, OSWER Directive 9285.7-57. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. April 2007

^[1] Dose values are the reported dose (converted to mg/kg-day, as appropriate) as cited in the listed source without the application of any uncertainty factor(s). Secondary dose refers to the corresponding LOAEL-based value observed in the same study, or derived used to derive the

^[2] An uncertainty factor (UF) was used to extrapolate exposure duration and toxicologic endpoint to a chronic NOAEL-based TRV value. This was accomplished by dividing the reported dose by the recommended uncertainty factor. A second UF, if present, was applied to the secondary dose.

^[3] An uncertainty factor of 5 (EPA, 1997) was used to extrapolate from a chronic NOAEL-based TRV (TRVNOAEL) to a chronic LOAEL- based TRV (TRVLOAEL) in the absence of a study-derived LOAEL value (i.e., TRVNOAEL * 5 = TRVLOAEL)

^[4] Multiple species were used in development of the TRV. Toxicologic or intertaxon extrapolation not applicable.

^[5] The source refers to the document (or internet site, as appropriate) from which the endpoint and dose were cited. For complete references refer to the listed source.

^[6] Values presented are for trivalent chromium.

APPENDIX E TABLE 4
ECOLOGICAL TOXICITY REFERENCE VALUES FOR THE MAMMALIAN RECEPTORS
ECOLOGICAL RISK ASSESSMENT
GREENWICH HIGHSCHOOL
GREENWICH, CT

COPEC	CAS	Endpoint Basis	Secondary Endpoint	Test	Tovicity Endneint	Dose ^[1] (mg/kg-BW/d)	Secondary Dose ^[1] (mg/kg-BW/d)	UF ^[2]		TRV _{NOAEL} ^[2] (mg/kg-BW/d)	TRV _{LOAEL} [3] (mg/kg-BW/d)	Comments and Source ^[5]
Polycyclic Aromatic Hydrocarbon		Dasis	Basis	Species	Toxicity Endpoint			UF				and Source
Total High Molecular Weight PAHs		C NOAEL	C LOAEL	[4]	Reproduction and Growth	0.6	3.1	1	1	0.62	3.1	EPA (2007a)
Total Low Molecular Weight PAHs	RACALC-LPAH	C NOAEL	C LOAEL	[4]	Reproduction and Growth	65.6	328	1	1	65.6	328	EPA (2007a)
PAH (total)	RACALC-HPAH	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Metals												
Arsenic	7440-38-2	C NOAEL	C LOAEL	[4]	Reproduction and Growth	1.0	1.7	1	NA	1.0	1.7	EPA (2005b)
Barium	7440-39-3	C NOAEL	C LOAEL	[4]	Reproduction and Growth	51.8	119.0	1	NA	51.8	119.0	EPA (2005c)
Cadmium	7440-43-9	C NOAEL	C LOAEL	[4]	Reproduction and Growth	0.77	7.1	1	NA	0.77	7.1	EPA (2005d)
Chromium	7440-47-3	C NOAEL	C LOAEL	[4]	Reproduction and Growth	2.4	35.1	1	NA	2.4	35.1	EPA (2005e) [6]
Copper	7440-50-8	C NOAEL	C LOAEL	[4]	Reproduction and Growth	5.6	9.3	1	NA	5.6	9.3	EPA (2006)
Lead	7439-92-1	C NOAEL	C LOAEL	[4]	Reproduction and Growth	4.7	8.9	1	NA	4.7	8.9	EPA (2005f)
Nickel	7440-02-0	C NOAEL	C LOAEL	[4]	Reproduction and Growth	1.7	3.4	1	1	1.7	3.4	EPA (2007b)
Vanadium	7440-62-2	C NOAEL	C LOAEL	[4]	Reproduction and Growth	4.2	8.3	1	NA	4.2	8.3	EPA (2005g)
Zinc	7440-66-6	C NOAEL	C LOAEL	[4]	Reproduction and Growth	75.4	292.1	1	1	75.4	292.1	EPA (2007c)
Mercury	7439-97-6	C NOAEL	NA	mink	Reproduction	1.0	NA	1	NA	1.0	5	Sample et al. (1996)

Notes:

- [1] Dose values are the reported dose (converted to mg/kg-day, as appropriate) as cited in the listed source without the application of any uncertainty factor(s). Secondary dose refers to the corresponding LOAEL-based value observed in the same study.
- [2] An uncertainty factor (UF) was used to extrapolate exposure duration and toxicologic endpoint to a chronic NOAEL-based TRV value. This was accomplished by dividing the reported dose by the recommended uncertainty factor. A second UF, if present, was applied to the secondary dose.
- [9] An uncertainty factor of 5 (U.S. EPA, 1997) was used to extrapolate from a chronic NOAEL-based TRV (TRVNOAEL) to a chronic LOAEL- based TRV (TRVLOAEL) in the absence of a study-derived LOAEL value (i.e., TRVNOAEL * 5 = TRVLOAEL)
- [4] Multiple species used in development of the TRV. Toxicologic or intertaxon extrapolation not applicable.
- [5] The source refers to the document (or internet site, as appropriate) from which the endpoint and dose were cited. For complete references refer to the listed source.
- [6] Values presented are for trivalent chromium

NA - Not Applicable or No Data Available

NOAEL - No Observed Adverse Effects Level

TRV - toxicity reference value

Note that the NOEL endpoint is assumed equivalent to the NOAEL, where indicated.

The toxicity values presented are consitent with the approach and sources outlined in ADEC (2000) and general approach presented in Eco-SSL guidance (EPA 2005a).

References

Sample, B.E., D.M. Opresko and G.W. Suter II, 1996. Toxicological Benchmarks for Wildlife: 1996 Revision . ES/ER/TM-86/R3. Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory.

EPA, 1997. EPA Region 10 Supplemental Ecological Risk Assessment Guidance for Superfund, June 1997

- EPA. 2005a. Guidance for Developing Ecological Soil Screening Levels. Office of Emergency and Remedial Response. Washington D.C.November 2003, Revised February 2005.
- EPA. 2005b. Ecological Soil Screening Levels for Arsenic. Interim Final. Office of Emergency and Remedial Response. Washington DC. March
- EPA. 2005c. Ecological Soil Screening Levels for Barium. Interim Final. Office of Emergency and Remedial Response. Washington DC. February
- EPA. 2005d. Ecological Soil Screening Levels for Cadmium. Interim Final. Office of Emergency and Remedial Response. Washington DC. March
- EPA. 2005e. Ecological Soil Screening Levels for Chromium. Interim Final. Office of Emergency and Remedial Response. Washington DC. March
- EPA. 2005f. Ecological Soil Screening Levels for Lead. Interim Final. Office of Emergency and Remedial Response. Washington DC. March
- EPA. 2005g. Ecological Soil Screening Levels for Vanadium. Interim Final. Office of Emergency and Remedial Response. Washington DC. March
- EPA. 2006. Ecological Soil Screening Levels for Copper Interim Final. Office of Emergency and Remedial Response. Washington DC. July
- EPA. 2007a. Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final, OSWER Directive 9285.7-78. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. June 2007
- EPA. 2007b. Ecological Soil Screening Levels for Nickel Interim Final, OSWER Directive 9285.7-76. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. March 2007
- EPA. 2007c. Ecological Soil Screening Levels for Zinc Interim Final, OSWER Directive 9285.7-73. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. June 2007
- EPA. 2007d. Ecological Soil Screening Levels for DDT and Metabolites Interim Final, OSWER Directive 9285.7-57. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. April 2007

APPENDIX E TABLE 5 POTENTIAL RISKS TO THE GREAT BLUE HERON - STEP 2 ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE GREAT BLUE HERON										
Average Body Weight (kg)	2.23									
Exposure Duration	1									
Area Use Factor	1									
Sediment Consumption Rate (kg _{dw} /day)	0.00485									
Water Consumption Rate (kg/day)	0.1009									
Fish Consumption Rate (kg _{dw} /day)	0.0951									
Invertebrate Consumption Rate (kg _{dw} /day)	0.0019									

COPC - Chemical of Potential Concern.

dw - Dry Weight.

EPC - Exposure Point Concentration. HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level.

MATC - Maximum Allowable Toxicant Concentration.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

Total Daily Dose = $\Sigma([IR_f \times C_f] + [IR_s \times C_s] + [IR_w \times C_w] \times ED \times AUF$ Average Body Weight (kg)

Where:

Where:

IR, = Ingestion rate of food (kg/day)

IR_a = Incidental ingestion rate of sediment or soil (kg/day)

IR_w = Drinking water ingestion rate(L/day)

C_v = Concentration of COPC in food (mg/kg)

C_v = Concentration of COPC in sediment or soil (mg/kg)

C_v = Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

NA - Not Analyzed. NC - Not Calculated. NOAEL - No Observed Adverse Effects Level. TRV - Toxicity Reference Value.

SUPPORTING CALCULATIONS														
FOOD WEB MODEL - MAXIMUM EPCs		Media	a Concentrations	3				Potent	ial Daily Dose (mg/kg _{bw} /day)				
	Sediment	Total Recoverable Phase Surface Water	Benthic Invertebrate	Fish (SW)	Fish (Sed)		Benthic						NOAEL-based TRV	NOAEL-based
COPC	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{ww})	(mg/kg _{dw})	Sediment	Invertebrate	Fish (SW)	Fish (Sed)	Fish (mean)	Surface Water	Total	(mg/kg _{bw} /day)	HQ
Inorganics														
ARSENIC	1.4E+01	ND	9.8E+00	NC	NC	3.1E-02	8.5E-03	NC	NC	NC	NC	3.9E-02	2.2E+00	1.8E-02
BARIUM	8.2E+02	1.4E-01	1.3E+02	2.8E+00	NC	1.8E+00	1.1E-01	1.2E-01	NC	1.2E-01	6.1E-03	2.0E+00	4.2E+01	4.9E-02
CADMIUM	2.8E+00	ND	2.3E+01	NC	NC	6.2E-03	2.0E-02	NC	NC	NC	NC	2.6E-02	1.5E+00	1.8E-02
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	NC	NC	2.1E-01	3.9E-02	NC	NC	NC	NC	2.5E-01	2.7E+00	9.3E-02
COPPER	4.2E+02	7.6E-03	2.2E+03	1.1E+00	NC	9.1E-01	1.9E+00	4.7E-02	NC	4.7E-02	3.4E-04	2.9E+00	4.1E+00	7.0E-01
LEAD	3.1E+02	ND	1.9E+02	NC	NC	6.6E-01	1.6E-01	NC	NC	NC	NC	8.3E-01	1.6E+00	5.1E-01
MERCURY	5.8E-01	ND	1.7E+00	NC	NC	1.3E-03	1.4E-03	NC	NC	NC	NC	2.7E-03	4.5E-01	6.0E-03
NICKEL	5.7E+01	ND	1.3E+02	NC	NC	1.2E-01	1.2E-01	NC	NC	NC	NC	2.4E-01	6.7E+00	3.6E-02
VANADIUM	1.0E+02	ND	8.9E+00	NC	NC	2.2E-01	7.7E-03	NC	NC	NC	NC	2.3E-01	3.4E-01	6.6E-01
ZINC	5.8E+02	ND	4.4E+03	NC	NC	1.3E+00	3.8E+00	NC	NC	NC	NC	5.1E+00	6.6E+01	7.7E-02
Organics														
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	NC	1.6E+02	2.5E-02	1.8E-03	NC	6.9E+00	6.9E+00	NC	6.9E+00	2.7E+01	2.5E-01
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	NC	1.4E+02	2.3E-01	1.6E-02	NC	5.8E+00	5.8E+00	NC	6.0E+00	2.7E+01	2.2E-01
TOTAL PAHs	1.2E+02	ND	2.1E+01	NC	8.6E+02	2.5E-01	1.8E-02	NC	3.7E+01	3.7E+01	NC	3.7E+01	2.7E+01	1.4E+00

APPENDIX E TABLE 6
POTENTIAL RISKS TO THE GREAT BLUE HERON - STEP 3A ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE GREAT BLUE HERON Average Body Weight (kg) Exposure Duration 2.23 Area Use Factor 0.8 Sediment Consumption Rate (kg_{dw}/day) 0.00485 Water Consumption Rate (kg/day) 0.1009 Fish Consumption Rate (kg_{dw}/day) 0.0951 Invertebrate Consumption Rate (kg_{dw}/day) 0.0019

Total Daily Dose = $\sum (||R_t \times C_t| + ||R_u \times C_u| + ||R_u \times C_w| \times ED \times AUF$ Average Body Weight (kg)

Average Bôdy Weight (kg)

Where:

IR, = Ingestion rate of food (kg/day)

IR, = Incidental ingestion rate of sediment or soil (kg/day)

IR, = Drinking water ingestion rate(L/day)

C, = Concentration of COPC in food (mg/kg)

C, = Concentration of COPC in sediment or soil (mg/kg)

C, = Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

COPC - Chemical of Potential Concern. dw - Dry Weight. EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level. MATC - Maximum Allowable Toxicant Concentration.

NA - Not Analyzed. NC - Not Calculated. NOAEL - No Observed Adverse Effects Level.

TRV - Toxicity Reference Value.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

MATC-based TRV represents the geometric	mean or the NC	MEL- AIIU LUMEL-L	aseu irvs.															
							SUPPO	RTING CA	LCULATION	ONS								
FOOD WEB MODEL - MAXIMUM			dia Concentration	ons				Potential	Daily Dose (mg	J/kg _{bw} /day)								
EPCs		Total Recoverable Phase Surface	Benthic										NOAEL-based		LOAEL-based		MATC-based	
	Sediment	Water	Invertebrate	Fish (SW)	Fish (Sed)		Benthic						TRV	NOAEL-based	TRV	LOAEL-based	TRV	MATC-based
COPC	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{ww})	(mg/kg _{dw})	Sediment	Invertebrate	Fish (SW)	Fish (Sed)	Fish (mean)	Surface Water	Total	(mg/kg _{bw} /day)	HQ	(mg/kg _{bw} /day)	HQ	(mg/kg _{bw} /day)	HQ
Inorganics																		
ARSENIC	1.4E+01	ND	9.8E+00	NC	NC	2.5E-02	6.8E-03	NC	NC	NC	NC	3.2E-02	2.2E+00	1.4E-02	4.5E+00	7.0E-03	3.2E+00	9.9E-03
BARIUM	8.2E+02	1.4E-01	1.3E+02	2.8E+00	NC	1.4E+00	9.2E-02	9.6E-02	NC	9.6E-02	4.9E-03	1.6E+00	4.2E+01	3.9E-02	2.1E+02	7.8E-03	9.3E+01	1.7E-02
CADMIUM	2.8E+00	ND	2.3E+01	NC	NC	4.9E-03	1.6E-02	NC	NC	NC	NC	2.1E-02	1.5E+00	1.4E-02	6.3E+00	3.3E-03	3.0E+00	6.8E-03
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	NC	NC	1.7E-01	3.1E-02	NC	NC	NC	NC	2.0E-01	2.7E+00	7.4E-02	8.9E+00	2.2E-02	4.9E+00	4.1E-02
COPPER	4.2E+02	7.6E-03	2.2E+03	1.1E+00	NC	7.2E-01	1.5E+00	3.7E-02	NC	3.7E-02	2.8E-04	2.3E+00	4.1E+00	5.6E-01	1.2E+01	1.9E-01	7.0E+00	3.3E-01
LEAD	3.1E+02	ND	1.9E+02	NC	NC	5.3E-01	1.3E-01	NC	NC	NC	NC	6.6E-01	1.6E+00	4.1E-01	3.3E+00	2.0E-01	2.3E+00	2.8E-01
MERCURY	5.8E-01	ND	1.7E+00	NC	NC	1.0E-03	1.2E-03	NC	NC	NC	NC	2.2E-03	4.5E-01	4.8E-03	9.0E-01	2.4E-03	6.4E-01	3.4E-03
NICKEL	5.7E+01	ND	1.3E+02	NC	NC	1.0E-01	9.2E-02	NC	NC	NC	NC	1.9E-01	6.7E+00	2.9E-02	2.1E+01	9.0E-03	1.2E+01	1.6E-02
VANADIUM	1.0E+02	ND	8.9E+00	NC	NC	1.8E-01	6.2E-03	NC	NC	NC	NC	1.8E-01	3.4E-01	5.3E-01	6.9E-01	2.6E-01	4.9E-01	3.7E-01
ZINC	5.8E+02	ND	4.4E+03	NC	NC	1.0E+00	3.0E+00	NC	NC	NC	NC	4.1E+00	6.6E+01	6.1E-02	1.9E+02	2.1E-02	1.1E+02	3.6E-02
Organics							,											
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	NC	1.6E+02	2.0E-02	1.4E-03	NC	5.5E+00	5.5E+00	NC	5.5E+00	2.7E+01	2.0E-01	1.4E+02	4.0E-02	6.1E+01	9.0E-02
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	NC	1.4E+02	1.8E-01	1.3E-02	NC	4.6E+00	4.6E+00	NC	4.8E+00	2.7E+01	1.8E-01	1.4E+02	3.5E-02	6.1E+01	7.9E-02
TOTAL PAHs	1.2E+02	ND	2.1E+01	NC	8.6E+02	2.0E-01	1.5E-02	NC	2.9E+01	2.9E+01	NC	2.9E+01	2.7E+01	1.1E+00	1.4E+02	2.2E-01	6.1E+01	4.8E-01

APPENDIX E TABLE 7 POTENTIAL RISKS TO THE MALLARD - STEP 2 ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE MALLAR	D
Average Body Weight (kg)	1.04
Exposure Duration	1
Area Use Factor	1
Sediment Consumption Rate (kg _{dw} /day)	0.00105
Water Consumption Rate (kg/day)	0.0607
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0132
Invertebrate Consumption Rate (kg _{dw} /day)	0.0391

Notes:

COPC - Chemical of Potential Concern.

dw - Dry Weight.

EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level. MATC - Maximum Allowable Toxicant Concentration.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations. MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

Total Daily Dose = $\frac{\sum(\lceil IR_{\underline{f}} \times \underline{C}_{\underline{f}} \rceil + \lceil IR_{\underline{g}} \times \underline{C}_{\underline{g}} \rceil + \lceil IR_{\underline{w}} \times \underline{C}_{\underline{w}} \rceil \times \underline{ED} \times \underline{AUF}}{Average Body Weight (kg)}$

Where:

Where:

IR_f = Ingestion rate of food (kg/day)

IR_s = Incidental ingestion rate of sediment or soil (kg/day)

IR_w = Drinking water ingestion rate(L/day)

C_f = Concentration of COPC in food (mg/kg)

C_s = Concentration of COPC in sediment or soil (mg/kg)

C_w = Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

			S	UPPORTING	G CALCUL	.ATIONS					
FOOD WEB MODEL - MAXIMUM EPCs		Media Conce	entrations			Potent	ial Daily Dose (mg/kg _{bw} /day)			
	Sediment	Total Recoverable Phase Surface Water	Benthic Invertebrate	Aquatic Plants		Benthic	Aquatic			NOAEL-based TRV	
СОРС	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{dw})	Sediment	Invertebrate	Plants	Surface Water	Total	(mg/kg _{bw} /day)	NOAEL-based HQ
Inorganics											
ARSENIC	1.4E+01	ND	9.8E+00	5.4E-01	1.4E-02	3.7E-01	6.8E-03	NC	3.9E-01	2.2E+00	1.7E-01
BARIUM	8.2E+02	1.4E-01	1.3E+02	1.3E+02	8.3E-01	4.9E+00	1.6E+00	7.9E-03	7.4E+00	4.2E+01	1.8E-01
CADMIUM	2.8E+00	ND	2.3E+01	1.1E+00	2.8E-03	8.5E-01	1.4E-02	NC	8.6E-01	1.5E+00	5.9E-01
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	3.9E+00	9.6E-02	1.7E+00	5.0E-02	NC	1.8E+00	2.7E+00	6.9E-01
COPPER	4.2E+02	7.6E-03	2.2E+03	2.1E+01	4.2E-01	8.2E+01	2.7E-01	4.4E-04	8.2E+01	4.1E+00	2.0E+01
LEAD	3.1E+02	ND	1.9E+02	6.6E+00	3.1E-01	7.0E+00	8.3E-02	NC	7.4E+00	1.6E+00	4.5E+00
MERCURY	5.8E-01	ND	1.7E+00	2.7E-01	5.8E-04	6.2E-02	3.5E-03	NC	6.6E-02	4.5E-01	1.5E-01
NICKEL	5.7E+01	ND	1.3E+02	2.2E+00	5.7E-02	5.0E+00	2.8E-02	NC	5.1E+00	6.7E+00	7.5E-01
VANADIUM	1.0E+02	ND	8.9E+00	4.9E-01	1.0E-01	3.3E-01	6.2E-03	NC	4.4E-01	3.4E-01	1.3E+00
ZINC	5.8E+02	ND	4.4E+03	1.6E+02	5.8E-01	1.6E+02	2.1E+00	NC	1.7E+02	6.6E+01	2.5E+00
Organics											
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	2.5E+00	1.2E-02	7.8E-02	3.2E-02	NC	1.2E-01	2.7E+01	4.4E-03
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	1.2E+01	1.0E-01	7.0E-01	1.5E-01	NC	9.6E-01	2.7E+01	3.5E-02
TOTAL PAHs	1.2E+02	ND	2.1E+01	1.4E+01	1.2E-01	7.8E-01	1.7E-01	NC	1.1E+00	2.7E+01	3.9E-02

APPENDIX E TABLE 8 POTENTIAL RISKS TO THE MALLARD - STEP 3A ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE MALL	ARD	Ī
Average Body Weight (kg)	1.04	Ī
Exposure Duration	1	
Area Use Factor	0.007	
Sediment Consumption Rate (kg _{dw} /day)	0.00105	
Water Consumption Rate (kg/day)	0.0607	
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0132	
Invertebrate Consumption Rate (kg _{dw} /day)	0.0391	

Notes:

COPC - Chemical of Potential Concern.

dw - Dry Weight. EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV). LOAEL - Lowest Observed Adverse Effects Level.

MATC - Maximum Allowable Toxicant Concentration.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations. MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

 $\label{eq:where:} \begin{aligned} &|Where: \\ &|R_r = &| ngestion rate of food (kg/day) \\ &|R_s = &| ncidental ingestion rate of sediment or soil (kg/day) \\ &|R_w = &| Drinking water ingestion rate(L/day) \\ &|C_r = &| Concentration of COPC in food (mg/kg) \\ &|C_s = &| Concentration of COPC in sediment or soil (mg/kg) \\ &|C_w = &| Concentration of COPC in water(mg/L) \\ &|ED = &| Exposure duration (fraction of time receptor spends within exposure area) \\ &|AUF = &| Area use factor (ratio of the receptor's home range relative to the size of exposure area) \end{aligned}$

NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

				5	SUPPORT	ING CALC	JLATIONS	S					
FOOD WEB MODEL - MAXIMUM		Media Con	centrations			Potential	Daily Dose (mg	g/kg _{bw} /day)					
EPCs	Sediment	Total Recoverable Phase Surface Water	Benthic Invertebrate	Aquatic Plants		Benthic	Aquatic			LOAEL-based TRV		MATC-based TRV	
COPC	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{dw})	Sediment	Invertebrate	Plants	Surface Water	Total	(mg/kg _{bw} /day)	LOAEL-based HQ	(mg/kg _{bw} /day)	MATC-based HQ
Inorganics											l		
ARSENIC	1.4E+01	ND	9.8E+00	5.4E-01	1.0E-04	2.6E-03	4.8E-05	NC	2.7E-03	4.5E+00	6.0E-04	3.2E+00	8.6E-04
BARIUM	8.2E+02	1.4E-01	1.3E+02	1.3E+02	5.8E-03	3.5E-02	1.1E-02	5.5E-05	5.2E-02	2.1E+02	2.5E-04	9.3E+01	5.6E-04
CADMIUM	2.8E+00	ND	2.3E+01	1.1E+00	2.0E-05	5.9E-03	9.8E-05	NC	6.1E-03	6.3E+00	9.6E-04	3.0E+00	2.0E-03
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	3.9E+00	6.7E-04	1.2E-02	3.5E-04	NC	1.3E-02	8.9E+00	1.4E-03	4.9E+00	2.6E-03
COPPER	4.2E+02	7.6E-03	2.2E+03	2.1E+01	2.9E-03	5.7E-01	1.9E-03	3.1E-06	5.8E-01	1.2E+01	4.8E-02	7.0E+00	8.3E-02
LEAD	3.1E+02	ND	1.9E+02	6.6E+00	2.1E-03	4.9E-02	5.8E-04	NC	5.2E-02	3.3E+00	1.6E-02	2.3E+00	2.2E-02
MERCURY	5.8E-01	ND	1.7E+00	2.7E-01	4.1E-06	4.4E-04	2.4E-05	NC	4.6E-04	9.0E-01	5.2E-04	6.4E-01	7.3E-04
NICKEL	5.7E+01	ND	1.3E+02	2.2E+00	4.0E-04	3.5E-02	2.0E-04	NC	3.5E-02	2.1E+01	1.7E-03	1.2E+01	3.0E-03
VANADIUM	1.0E+02	ND	8.9E+00	4.9E-01	7.1E-04	2.3E-03	4.4E-05	NC	3.1E-03	6.9E-01	4.5E-03	4.9E-01	6.4E-03
ZINC	5.8E+02	ND	4.4E+03	1.6E+02	4.1E-03	1.1E+00	1.5E-02	NC	1.2E+00	1.9E+02	6.2E-03	1.1E+02	1.0E-02
Organics													
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	2.5E+00	8.1E-05	5.4E-04	2.2E-04	NC	8.5E-04	1.4E+02	6.2E-06	6.1E+01	1.4E-05
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	1.2E+01	7.3E-04	4.9E-03	1.1E-03	NC	6.7E-03	1.4E+02	4.9E-05	6.1E+01	1.1E-04
TOTAL PAHs	1.2E+02	ND	2.1E+01	1.4E+01	8.2E-04	5.5E-03	1.2E-03	NC	7.5E-03	1.4E+02	5.5E-05	6.1E+01	1.2E-04

APPENDIX E TABLE 9 POTENTIAL RISKS TO THE MINK - STEP 2 ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE MIN	K
Average Body Weight (kg)	0.57
Exposure Duration	1
Area Use Factor	1
Sediment Consumption Rate (kg _{dw} /day)	0.00289
Water Consumption Rate (kg/day)	0.0595
Fish Consumption Rate (kg _{dw} /day)	0.0261
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0006
Invertebrate Consumption Rate (kg _{dw} /day)	0.0040

COPC - Chemical of Potential Concern.

dw - Dry Weight.

EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level. MATC - Maximum Allowable Toxicant Concentration.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations. MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs. Total Daily Dose = $\Sigma([[R_t \times C_t] + [[R_u \times C_u] + [[R_w \times C_w]] \times ED \times AUF]$ Average Body Weight (kg)

Where:

Where:

IR, = Ingestion rate of food (kg/day)

IR_s = Incidental ingestion rate of sediment or soil (kg/day)

IR_w = Drinking water ingestion rate(L/day)

C_s = Concentration of COPC in food (mg/kg)

C_s = Concentration of COPC in sediment or soil (mg/kg)

C_s = Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

NA - Not Analyzed.

NC - Not Calculated.
NOAEL - No Observed Adverse Effects Level.

SUPPORTING CALCULATIONS																
FOOD WEB MODEL - MAXIMUM			Media Conce	entrations					Po	tential Daily Do	se (mg/kg _{bw} /da	ay)				
EPCs	Sediment	Total Recoverable Phase Surface Water	Benthic Invertebrate	Fish (SW)	Fish (Sed)	Aquatic Plants		Benthic					Aquatic		NOAEL-based TRV	NOAEL-
COPC	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{ww})	(mg/kg _{dw})	(mg/kg _{dw})	Sediment	Invertebrate	Fish (SW)	Fish (Sed)	Fish (mean)	Surface Water	Plants	Total	(mg/kg _{bw} /day)	based HQ
Inorganics																
ARSENIC	1.4E+01	ND	9.8E+00	NC		5.4E-01	7.2E-02	6.9E-02	NC	NC	NC	NC	5.8E-04	1.4E-01	1.0E+00	1.4E-01
BARIUM	8.2E+02	1.4E-01	1.3E+02	2.8E+00		1.3E+02	4.2E+00	9.3E-01	1.3E-01	NC	1.3E-01	1.4E-02	1.4E-01	5.4E+00	5.2E+01	1.0E-01
CADMIUM	2.8E+00	ND	2.3E+01	NC		1.1E+00	1.4E-02	1.6E-01	NC	NC	NC	NC	1.2E-03	1.7E-01	7.7E-01	2.3E-01
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	NC		3.9E+00	4.9E-01	3.2E-01	NC	NC	NC	NC	4.2E-03	8.1E-01	2.4E+00	3.4E-01
COPPER	4.2E+02	7.6E-03	2.2E+03	1.1E+00		2.1E+01	2.1E+00	1.5E+01	5.0E-02	NC	5.0E-02	8.0E-04	2.3E-02	1.8E+01	5.6E+00	3.1E+00
LEAD	3.1E+02	ND	1.9E+02	NC		6.6E+00	1.6E+00	1.3E+00	NC	NC	NC	NC	7.1E-03	2.9E+00	4.7E+00	6.1E-01
MERCURY	5.8E-01	ND	1.7E+00	NC		2.7E-01	2.9E-03	1.2E-02	NC	NC	NC	NC	3.0E-04	1.5E-02	1.0E+00	1.5E-02
NICKEL	5.7E+01	ND	1.3E+02	NC		2.2E+00	2.9E-01	9.3E-01	NC	NC	NC	NC	2.4E-03	1.2E+00	1.7E+00	7.2E-01
VANADIUM	1.0E+02	ND	8.9E+00	NC		4.9E-01	5.1E-01	6.2E-02	NC	NC	NC	NC	5.3E-04	5.8E-01	4.2E+00	1.4E-01
ZINC	5.8E+02	ND	4.4E+03	NC		1.6E+02	2.9E+00	3.1E+01	NC	NC	NC	NC	1.8E-01	3.4E+01	7.5E+01	4.5E-01
Organics																
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	NC	1.6E+02	2.5E+00	5.8E-02	1.5E-02	NC	7.4E+00	7.4E+00	NC	2.7E-03	7.5E+00	6.6E+01	1.1E-01
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	NC	1.4E+02	1.2E+01	5.3E-01	1.3E-01	NC	6.2E+00	6.2E+00	NC	1.3E-02	6.9E+00	6.2E-01	1.1E+01
TOTAL PAHs	1.2E+02	ND	2.1E+01	NC	8.6E+02	1.4E+01	5.9E-01	1.5E-01	NC	3.9E+01	3.9E+01	NC	1.5E-02	4.0E+01	NA	1.1E+01

APPENDIX E TABLE 10 POTENTIAL RISKS TO THE MINK - STEP 3A ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE MII	ΝK
Average Body Weight (kg)	0.57
Exposure Duration	1
Area Use Factor	0.26
Sediment Consumption Rate (kg _{dw} /day)	0.00289
Water Consumption Rate (kg/day)	0.0595
Fish Consumption Rate (kg _{dw} /day)	0.0261
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0006
nvertebrate Consumption Rate (kg _{dw} /day)	0.0040

Notes: COPC - Chemical of Potential Concern.

dw - Dry Weight.

EPC - Exposure Point Concentration. HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level.

MATC - Maximum Allowable Toxicant Concentration.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

Total Daily Dose = $\Sigma(\underbrace{[IR_x \times C_x]}_{\text{Average Body Weight (kg)}} \times \underbrace{C_x}_{\text{Nu}} \times ED \times AUF$

Average Body Weight (kg)

Where:

IR = Ingestion rate of food (kg/day)

IR = Incidental ingestion rate of sediment or soil (kg/day)

IR = Incidental ingestion rate (L/day)

C; = Concentration of COPC in food (mg/kg)

C,= Concentration of COPC in sediment or soil (mg/kg)

C,= Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

All E = Area use Factor (ratio of the receptor's home range relative to the size of e: AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

SUPPORTING CALCULATIONS																		
FOOD WEB MODEL - MAXIMUM			Media Concer	ntrations					Pot	ential Daily D	ose (mg/kg _{bw} /c	lay)						
EPCs	Sediment	Total Recoverable Phase Surface Water	Benthic Invertebrate	Fish (SW)	Fish (Sed)	Aquatic Plants		Benthic				Surface	Aquatic		LOAEL-based TRV	LOAEL-based	MATC-based TRV	MATC-
COPC	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{ww})	(mg/kg _{dw})	(mg/kg _{dw})	Sediment	Invertebrate	Fish (SW)	Fish (Sed)	Fish (mean)	Water	Plants	Total	(mg/kg _{bw} /day)	HQ	(mg/kg _{bw} /day)	based HQ
Inorganics																		
ARSENIC	1.4E+01	ND	9.8E+00	NC		5.4E-01	1.8E-02	1.8E-02	NC	NC	NC	NC	1.5E-04	3.6E-02	1.7E+00	2.1E-02	1.3E+00	2.7E-02
BARIUM	8.2E+02	1.4E-01	1.3E+02	2.8E+00		1.3E+02	1.1E+00	2.4E-01	3.3E-02	NC	3.3E-02	3.6E-03	3.5E-02	1.4E+00	1.2E+02	1.2E-02	7.9E+01	1.8E-02
CADMIUM	2.8E+00	ND	2.3E+01	NC		1.1E+00	3.7E-03	4.1E-02	NC	NC	NC	NC	3.0E-04	4.5E-02	7.1E+00	6.3E-03	2.3E+00	1.9E-02
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	NC		3.9E+00	1.2E-01	8.1E-02	NC	NC	NC	NC	1.1E-03	2.1E-01	3.5E+01	5.9E-03	9.2E+00	2.2E-02
COPPER	4.2E+02	7.6E-03	2.2E+03	1.1E+00	-	2.1E+01	5.4E-01	3.9E+00	1.3E-02	NC	1.3E-02	2.0E-04	5.8E-03	4.5E+00	9.3E+00	4.8E-01	7.2E+00	6.2E-01
LEAD	3.1E+02	ND	1.9E+02	NC		6.6E+00	4.0E-01	3.3E-01	NC	NC	NC	NC	1.8E-03	7.3E-01	8.9E+00	8.2E-02	6.5E+00	1.1E-01
MERCURY	5.8E-01	ND	1.7E+00	NC	-	2.7E-01	7.5E-04	3.0E-03	NC	NC	NC	NC	7.6E-05	3.8E-03	5.1E+00	7.5E-04	2.3E+00	1.7E-03
NICKEL	5.7E+01	ND	1.3E+02	NC	-	2.2E+00	7.4E-02	2.4E-01	NC	NC	NC	NC	6.2E-04	3.1E-01	3.4E+00	9.2E-02	2.4E+00	1.3E-01
VANADIUM	1.0E+02	ND	8.9E+00	NC		4.9E-01	1.3E-01	1.6E-02	NC	NC	NC	NC	1.4E-04	1.5E-01	8.3E+00	1.8E-02	5.9E+00	2.5E-02
ZINC	5.8E+02	ND	4.4E+03	NC	-	1.6E+02	7.5E-01	7.8E+00	NC	NC	NC	NC	4.5E-02	8.6E+00	2.9E+02	3.0E-02	1.5E+02	5.8E-02
Organics																		
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	NC	1.6E+02	2.5E+00	1.5E-02	3.7E-03	NC	1.9E+00	1.9E+00	NC	6.9E-04	1.9E+00	3.3E+02	5.8E-03	1.5E+02	1.3E-02
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	NC	1.4E+02	1.2E+01	1.4E-01	3.4E-02	NC	1.6E+00	1.6E+00	NC	3.3E-03	1.8E+00	3.1E+00	5.7E-01	1.4E+00	1.3E+00
TOTAL PAHs	1.2E+02	ND	2.1E+01	NC	8.6E+02	1.4E+01	1.5E-01	3.7E-02	NC	1.0E+01	1.0E+01	NC	3.8E-03	1.0E+01	NA	5.8E-01	NC	1.3E+00

APPENDIX E TABLE 11 POTENTIAL RISKS TO THE RACCOON - STEP 2 ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE RACCO	OON
Average Body Weight (kg)	5.74
Exposure Duration	1
Area Use Factor	1
Sediment Consumption Rate (kg _{dw} /day)	0.01436
Water Consumption Rate (kg/day)	0.4772
Fish Consumption Rate (kg _{dw} /day)	0.0046
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0598
Invertebrate Consumption Rate (kg _{dw} /day)	0.0886

COPC - Chemical of Potential Concern.

dw - Dry Weight.

EPC - Exposure Point Concentration. HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level.

MATC - Maximum Allowable Toxicant Concentration.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations. MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

Total Daily Dose = $\frac{\sum([|R_{\underline{x}} \times C_{\underline{x}}] + [|R_{\underline{x}} \times C_{\underline{x}}] + [|R_{\underline{w}} \times C_{\underline{w}}] \times ED \times AUF}{\text{Average Body Weight (kg)}}$

Average Body Weight (kg)

Where:

IR, = Ingestion rate of food (kg/day)

IR_s = Incidental ingestion rate of sediment or soil (kg/day)

IR_s = Drinking water ingestion rate(L/day)

C_r = Concentration of COPC in food (mg/kg)

C_s = Concentration of COPC in sediment or soil (mg/kg)

C_w = Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

SUPPORTING CALCULATIONS																
FOOD WEB MODEL - MAXIMUM			Media Conce	ntrations					Poter	ntial Daily Dos	se (mg/kg _{bw} /da	y)				
EPCs	Sediment	Total Recoverable Phase Surface Water	Benthic Invertebrate	Fish (SW)	Fish (Sed)	Aquatic Plants		Benthic				Surface	Aquatic		NOAEL-based TRV	NOAEL-
СОРС	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	(mg/kg _{ww})	(mg/kg _{dw})	(mg/kg _{dw})	Sediment	Invertebrate	Fish (SW)	Fish (Sed)	Fish (mean)	Water	Plants	Total	(mg/kg _{bw} /day)	based HQ
Inorganics								•							1	
ARSENIC	1.4E+01	ND	9.8E+00	NC		5.4E-01	3.6E-02	1.5E-01	NC	NC	NC	NC	5.6E-03	1.9E-01	1.0E+00	1.8E-01
BARIUM	8.2E+02	1.4E-01	1.3E+02	2.8E+00		1.3E+02	2.1E+00	2.0E+00	2.2E-03	NC	2.2E-03	1.1E-02	1.3E+00	5.4E+00	5.2E+01	1.1E-01
CADMIUM	2.8E+00	ND	2.3E+01	NC		1.1E+00	7.1E-03	3.5E-01	NC	NC	NC	NC	1.1E-02	3.7E-01	7.7E-01	4.8E-01
CHROMIUM, TOTAL	9.6E+01	ND	4.5E+01	NC		3.9E+00	2.4E-01	6.9E-01	NC	NC	NC	NC	4.1E-02	9.7E-01	2.4E+00	4.1E-01
COPPER	4.2E+02	7.6E-03	2.2E+03	1.1E+00		2.1E+01	1.0E+00	3.4E+01	8.7E-04	NC	8.7E-04	6.3E-04	2.2E-01	3.5E+01	5.6E+00	6.2E+00
LEAD	3.1E+02	ND	1.9E+02	NC		6.6E+00	7.6E-01	2.9E+00	NC	NC	NC	NC	6.8E-02	3.7E+00	4.7E+00	7.9E-01
MERCURY	5.8E-01	ND	1.7E+00	NC		2.7E-01	1.4E-03	2.6E-02	NC	NC	NC	NC	2.9E-03	3.0E-02	1.0E+00	3.0E-02
NICKEL	5.7E+01	ND	1.3E+02	NC		2.2E+00	1.4E-01	2.0E+00	NC	NC	NC	NC	2.3E-02	2.2E+00	1.7E+00	1.3E+00
VANADIUM	1.0E+02	ND	8.9E+00	NC		4.9E-01	2.5E-01	1.4E-01	NC	NC	NC	NC	5.1E-03	3.9E-01	4.2E+00	9.5E-02
ZINC	5.8E+02	ND	4.4E+03	NC		1.6E+02	1.5E+00	6.7E+01	NC	NC	NC	NC	1.7E+00	7.1E+01	7.5E+01	9.4E-01
Organics																
TOTAL LMW PAHs	1.2E+01	ND	2.1E+00	NC	1.6E+02	2.5E+00	2.9E-02	3.2E-02	NC	1.3E-01	1.3E-01	NC	2.6E-02	2.2E-01	6.6E+01	3.3E-03
TOTAL HMW PAHs	1.0E+02	ND	1.9E+01	NC	1.4E+02	1.2E+01	2.6E-01	2.9E-01	NC	1.1E-01	1.1E-01	NC	1.2E-01	7.8E-01	6.2E-01	1.3E+00
TOTAL PAHs	1.2E+02	ND	2.1E+01	NC	8.6E+02	1.4E+01	2.9E-01	3.2E-01	NC	6.8E-01	6.8E-01	NC	1.4E-01	1.4E+00	NA	1.3E+00

APPENDIX E TABLE 12 POTENTIAL RISKS TO THE RACCOON - STEP 3A ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE RACC	OON
Average Body Weight (kg)	5.74
Exposure Duration	1 1
Area Use Factor	0.019
Sediment Consumption Rate (kg _{dw} /day)	0.01436
Water Consumption Rate (kg/day)	0.4772
Fish Consumption Rate (kg _{dw} /day)	0.0046
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0598
Invertebrate Consumption Rate (kg _{dw} /day)	0.0886

COPC - Chemical of Potential Concern.

dw - Dry Weight. EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV). LOAEL - Lowest Observed Adverse Effects Level.

MATC - Maximum Allowable Toxicant Concentration.

Total Daily Dose = $\Sigma([IR_f \times C_f] + [IR_s \times C_s] + [IR_w \times C_w] \times ED \times AUF$ Average Body Weight (kg)

Where:

Where.
IR_s = Ingestion rate of food (kg/day)
IR_s = Incidental ingestion rate of sediment or soil (kg/day)
IR_w = Drinking water ingestion rate(L/day)

C_f = Concentration of COPC in food (mg/kg)

C_s= Concentration of COPC in sediment or soil (mg/kg)
C_w= Concentration of COPC in water(mg/L)
ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area)

NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

TRV - Toxicity Reference Value.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

SUPPORTING CALCULATIONS FOOD WEB MODEL - MAXIMUM Potential Daily Dose (mg/kgbw/day) Media Concentrations **EPCs** Recoverable Benthic LOAEL-based MATC-based Phase Surface Aquatic Sediment Fish (SW) Fish (Sed) Water Invertebrate Plants TRV TRV Benthic Surface Aquatic LOAEL-MATC-based COPC (mg/kg_{ww}) (mg/kg_{dw}) Sediment Fish (SW) Fish (Sed) Fish (mean) Total (mg/kg_{dw}) (mg/L) (mg/kg_{dw}) (mg/kg_{dw}) Invertebrate Water Plants (mg/kg_{bw}/day) based HQ (mg/kg_{bw}/day) Inorganics 1.4F+01 ND 9.8F+00 5.4F-01 6 7F-04 2 9F-03 NC. NC. 1 1F-04 3.6F-03 1.7F+00 2 1F-03 1.3F+00 2 7F-03 ARSENIC NC. NC. NC. BARIUM 2.8E+00 4.2E-05 2.5E-02 8.2E+02 1.4E-01 1.3E+02 1.3F+02 3.9E-02 3.8F-02 4.2E-05 NC 2.1E-04 1.0F-01 1.2E+02 8.6F-04 7.9F+01 1.3E-03 CADMIUM 2.2E-04 7.7E-04 2.8E+00 ND 2.3E+01 NC 1.1E+00 1.3E-04 6.6E-03 NC NC NC NC 6.9E-03 7.1E+00 9.8E-04 2.3E+00 3.0E-03 CHROMIUM, TOTAL 9.6E+01 ND 4.5E+01 NC 3.9E+00 4 5F-03 1.3E-02 NC NC NC. NC 1.8E-02 3.5F+01 5.2E-04 9.2E+00 2.0E-03 COPPER 4.2E+02 7.6E-03 2.2E+03 1.1E+00 2.1E+01 2.0E-02 6.4E-01 1.6E-05 NC 1.6E-05 1.2E-05 4.1E-03 6.6E-01 9.3F+00 7.1E-02 7.2E+00 9.1E-02 LEAD 3.1E+02 ND 1.9E+02 NC 6.6E+00 1.4E-02 5.4E-02 NC NC NC NC 1.3F-03 7.0F-02 8.9E+00 7.9E-03 6.5E+00 1.1E-02 MERCURY 5.8E-01 ND 1.7E+00 NC 2.7E-01 2.7E-05 4.8E-04 NC NC NC NC 5.4E-05 5.6E-04 5.1E+00 1.1E-04 2.3E+00 2.5E-04 NICKEL 5.7E+01 ND 1.3E+02 NC 2.2E+00 2.7E-03 3.9E-02 NC NC NC NC 4.4E-04 4.2E-02 3.4E+00 1.2E-02 2.4E+00 1.7E-02 VANADIUM 1.0E+02 ND 8.9E+00 NC 4.9E-01 4.8E-03 2.6E-03 NC NC NC NC 9.6E-05 7.5E-03 8.3E+00 9.0E-04 5.9E+00 1.3E-03 5.8E+02 ND 4.4E+03 NC 1.6E+02 2.7E-02 1.3E+00 NC NC NC NC 3.2E-02 1.3E+00 2.9E+02 4.6E-03 1.5E+02 9.0E-03 ZINC Organics TOTAL LMW PAHs 1.2E+01 2.1E+00 1.6E+02 2.5E+00 5.4E-04 6.0E-04 2.4E-03 2.4E-03 4.9E-04 4.1E-03 3.3E+02 1.2E-05 1.5E+02 2.8E-05 TOTAL HMW PAHs 1.0E+02 1.9E+01 1.4E+02 1.2E+01 4.9E-03 5.5E-03 NC 2.0E-03 2.0E-03 NC 2.3E-03 1.5E-02 3.1E+00 4.8E-03 1.4E+00 ND NC 1.1E-02 NC 8.6E+02 NC NC TOTAL PAHS 1.2F+02 ND 2.1F+01 5.5F-03 6.1F-03 1.3F-02 1.3F-02 2.7F-03 2.7F-02 NA 4.8F-03 1.4E+01 NC 1.1F-02

APPENDIX E TABLE 13 POTENTIAL RISKS TO THE MUSKRAT - STEP 2 ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE MUSKRA	T
Average Body Weight (kg)	0.84
Exposure Duration	1
Area Use Factor	1
Sediment Consumption Rate (kg _{dw} /day)	0.0000054
Water Consumption Rate (kg/day)	0.0844
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0598

Total Daily Dose = $\sum (||R_1 \times C_1| + ||R_2 \times C_2| + ||R_M \times C_M| \times ED \times AUF$ Average Body Weight (kg)

Notes: COPC - Chemical of Potential Concern. dw - Dry Weight. EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level.

MATC - Maximum Allowable Toxicant Concentration.

NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

TRV - Toxicity Reference Value.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations. MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

		SL		G CALCU	LATIONS				
FOOD WEB MODEL - MAXIMUM EPCs	Med	dia Concentrations			Potential Daily	Dose (mg/kg _{bw} /d	ay)		
	Sediment	Total Recoverable Phase Surface Water	Aquatic Plants					NOAEL-based TRV	
СОРС	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	Sediment	Surface Water	Aquatic Plants	Total	(mg/kg _{bw} /day)	NOAEL-based HQ
Inorganics									
ARSENIC	1.4E+01	ND	5.4E-01	9.1E-05	NC	3.9E-02	3.9E-02	1.0E+00	3.7E-02
BARIUM	8.2E+02	1.4E-01	1.3E+02	5.3E-03	1.4E-02	9.2E+00	9.2E+00	5.2E+01	1.8E-01
CADMIUM	2.8E+00	ND	1.1E+00	1.8E-05	NC	7.8E-02	7.8E-02	7.7E-01	1.0E-01
CHROMIUM, TOTAL	9.6E+01	ND	3.9E+00	6.1E-04	NC	2.8E-01	2.8E-01	2.4E+00	1.2E-01
COPPER	4.2E+02	7.6E-03	2.1E+01	2.7E-03	7.7E-04	1.5E+00	1.5E+00	5.6E+00	2.7E-01
LEAD	3.1E+02	ND	6.6E+00	2.0E-03	NC	4.7E-01	4.7E-01	4.7E+00	1.0E-01
MERCURY	5.8E-01	ND	2.7E-01	3.7E-06	NC	2.0E-02	2.0E-02	1.0E+00	1.9E-02
NICKEL	5.7E+01	ND	2.2E+00	3.7E-04	NC	1.6E-01	1.6E-01	1.7E+00	9.4E-02
VANADIUM	1.0E+02	ND	4.9E-01	6.5E-04	NC	3.5E-02	3.6E-02	4.2E+00	8.6E-03
ZINC	5.8E+02	ND	1.6E+02	3.7E-03	NC	1.2E+01	1.2E+01	7.5E+01	1.6E-01
Organics									
TOTAL LMW PAHs	1.2E+01	ND	2.5E+00	7.4E-05	NC	1.8E-01	1.8E-01	6.6E+01	2.7E-03
TOTAL HMW PAHs	1.0E+02	ND	1.2E+01	6.7E-04	NC	8.4E-01	8.5E-01	6.2E-01	1.4E+00
TOTAL PAHs	1.2E+02	ND	1.4E+01	7.4E-04	NC	9.8E-01	9.8E-01	NA	1.4E+00

APPENDIX E TABLE 14 POTENTIAL RISKS TO THE MUSKRAT - STEP 3A ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

ASSUMPTIONS FOR THE MUSKRA	AT
Average Body Weight (kg)	0.84
Exposure Duration	1
Area Use Factor	1
Sediment Consumption Rate (kg _{dw} /day)	0.0000054
Water Consumption Rate (kg/day)	0.0844
Aq. Plant Consumption Rate (kg _{dw} /day)	0.0598

Total Daily Dose = $\frac{\sum([|R_t \times C_t] + [|R_g \times C_g] + [|R_w \times C_w] \times ED \times AUF}{Average Body Weight (kg)}$

Where:

IR, = Ingestion rate of food (kg/day)

IR_s = Incidental ingestion rate of sediment or soil (kg/day)

IR_w = Drinking water ingestion rate(L/day)

IR_w = Drinking water ingestion rate(L/day)

C_s = Concentration of COPC in food (mg/kg)

C_s = Concentration of COPC in sediment or soil (mg/kg)

C_w = Concentration of COPC in water(mg/L)

ED = Exposure duration (fraction of time receptor spends within exposure area)

AUF = Area use factor (ratio of the receptor's home range relative to the size of exposure area) exposure area)

Notes: COPC - Chemical of Potential Concern. dw - Dry Weight. EPC - Exposure Point Concentration.

HQ - Hazard Quotient (Dose/TRV).

LOAEL - Lowest Observed Adverse Effects Level. MATC - Maximum Allowable Toxicant Concentration. NA - Not Analyzed. NC - Not Calculated.

NOAEL - No Observed Adverse Effects Level.

TRV - Toxicity Reference Value.

HQs above 1 are bolded and highlighted.

Maximum EPCs for screening level evaluation represent maximum detected concentrations. MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

		LONEL Based Tity		STIDDUD.	TING CALC	ULATIONS					
FOOD WEB MODEL - MAXIMUM EPCs	Med	dia Concentrations		OOI I OIL		Dose (mg/kg _{bw} /da	av)				
	Sediment	Total Recoverable Phase Surface Water	Aquatic Plants			350		LOAEL-based TRV		MATC-based TRV	
COPC	(mg/kg _{dw})	(mg/L)	(mg/kg _{dw})	Sediment	Surface Water	Aquatic Plants	Total	(mg/kg _{bw} /day)	LOAEL-based HQ	(mg/kg _{bw} /day)	MATC-based HQ
Inorganics											
ARSENIC	1.4E+01	ND	5.4E-01	9.1E-05	NC	3.9E-02	3.9E-02	1.7E+00	2.3E-02	1.3E+00	2.9E-02
BARIUM	8.2E+02	1.4E-01	1.3E+02	5.3E-03	1.4E-02	9.2E+00	9.2E+00	1.2E+02	7.7E-02	7.9E+01	1.2E-01
CADMIUM	2.8E+00	ND	1.1E+00	1.8E-05	NC	7.8E-02	7.8E-02	7.1E+00	1.1E-02	2.3E+00	3.4E-02
CHROMIUM, TOTAL	9.6E+01	ND	3.9E+00	6.1E-04	NC	2.8E-01	2.8E-01	3.5E+01	8.0E-03	9.2E+00	3.1E-02
COPPER	4.2E+02	7.6E-03	2.1E+01	2.7E-03	7.7E-04	1.5E+00	1.5E+00	9.3E+00	1.6E-01	7.2E+00	2.1E-01
LEAD	3.1E+02	ND	6.6E+00	2.0E-03	NC	4.7E-01	4.7E-01	8.9E+00	5.3E-02	6.5E+00	7.3E-02
MERCURY	5.8E-01	ND	2.7E-01	3.7E-06	NC	2.0E-02	2.0E-02	5.1E+00	3.9E-03	2.3E+00	8.7E-03
NICKEL	5.7E+01	ND	2.2E+00	3.7E-04	NC	1.6E-01	1.6E-01	3.4E+00	4.7E-02	2.4E+00	6.7E-02
VANADIUM	1.0E+02	ND	4.9E-01	6.5E-04	NC	3.5E-02	3.6E-02	8.3E+00	4.3E-03	5.9E+00	6.1E-03
ZINC	5.8E+02	ND	1.6E+02	3.7E-03	NC	1.2E+01	1.2E+01	2.9E+02	4.0E-02	1.5E+02	7.9E-02
Organics											
TOTAL LMW PAHs	1.2E+01	ND	2.5E+00	7.4E-05	NC	1.8E-01	1.8E-01	3.3E+02	5.4E-04	1.5E+02	1.2E-03
TOTAL HMW PAHs	1.0E+02	ND	1.2E+01	6.7E-04	NC	8.4E-01	8.5E-01	3.1E+00	2.7E-01	1.4E+00	6.1E-01
TOTAL PAHs	1.2E+02	ND	1.4E+01	7.4E-04	NC	9.8E-01	9.8E-01	NA	2.7E-01	NC	6.1E-01

APPENDIX E TABLE 15 SUMMARY OF POTENTIAL RISKS TO WILDLIFE -- DOWNSTREAM AREA ECOLOGICAL RISK ASSESSMENT GREENWICH HIGHSCHOOL GREENWICH, CT

	MATC-based HQs - Maximum Concentrations										
COPC	GREAT BLUE HERON	MALLARD	MINK	RACCOON	MUSKRAT						
Step 2 Evaluation	<u> </u>										
Inorganics											
ARSENIC	1.2E-02	1.2E-01	1.1E-01	1.4E-01	2.9E-02						
BARIUM	2.2E-02	7.9E-02	6.9E-02	6.9E-02	1.2E-01						
CADMIUM	8.5E-03	2.8E-01	7.5E-02	1.6E-01	3.4E-02						
CHROMIUM, TOTAL	5.1E-02	3.8E-01	8.8E-02	1.1E-01	3.1E-02						
COPPER	4.1E-01	1.2E+01	2.4E+00	4.8E+00	2.1E-01						
LEAD	3.6E-01	3.2E+00	4.4E-01	5.7E-01	7.3E-02						
MERCURY	4.2E-03	1.0E-01	6.6E-03	1.3E-02	8.7E-03						
NICKEL	2.0E-02	4.2E-01	5.1E-01	9.2E-01	6.7E-02						
VANADIUM	4.7E-01	9.1E-01	9.8E-02	6.7E-02	6.1E-03						
ZINC	4.5E-02	1.5E+00	2.3E-01	4.8E-01	7.9E-02						
Organics	·										
HPAH, TOTAL	9.9E-02	1.6E-02	5.0E+00	5.7E-01	6.1E-01						
LPAH, TOTAL	1.1E-01	2.0E-03	5.1E-02	1.5E-03	1.2E-03						
PAH, TOTAL	6.0E-01	1.8E-02	5.1E+00	5.7E-01	6.1E-01						
Step 3A Evaluation											
Inorganics											
ARSENIC	9.9E-03	8.6E-04	2.7E-02	2.7E-03	2.9E-02						
BARIUM	1.7E-02	5.6E-04	1.8E-02	1.3E-03	1.2E-01						
CADMIUM	6.8E-03	2.0E-03	1.9E-02	3.0E-03	3.4E-02						
CHROMIUM, TOTAL	4.1E-02	2.6E-03	2.2E-02	2.0E-03	3.1E-02						
COPPER	3.3E-01	8.3E-02	6.2E-01	9.1E-02	2.1E-01						
LEAD	2.8E-01	2.2E-02	1.1E-01	1.1E-02	7.3E-02						
MERCURY	3.4E-03	7.3E-04	1.7E-03	2.5E-04	8.7E-03						
NICKEL	1.6E-02	3.0E-03	1.3E-01	1.7E-02	6.7E-02						
VANADIUM	3.7E-01	6.4E-03	2.5E-02	1.3E-03	6.1E-03						
ZINC	3.6E-02	1.0E-02	5.8E-02	9.0E-03	7.9E-02						
Organics											
HPAH, TOTAL	7.9E-02	1.1E-04	1.3E+00	1.1E-02	6.1E-01						
LPAH, TOTAL	9.0E-02	1.4E-05	1.3E-02	2.8E-05	1.2E-03						
PAH, TOTAL	4.8E-01	1.2E-04	1.3E+00	1.1E-02	6.1E-01						

Notes:

Maximum EPCs for screening level evaluation represent maximum detected concentrations. Potential risk is calculated using the maximum detected concentrations and MATC-based TRVs. HQs above 1 are bolded and highlighted.

MATC-based TRV represents the geometric mean of the NOAEL- and LOAEL-based TRVs.

COPC - Chemical of Potential Concern.

HMW - High Molecular Weight. HQ - Hazard Quotient (Dose/TRV). LMW - Low Molecular Weight.

MATC - Maximum Allowable Toxicant Concentration.
PAHs - Polycyclic Aromatic Hydrocarbons.